ADDENDUM #1

June 26, 2018

PROJECT: Rocky River Creek / Antiquity Greenway

Changes and Clarifications - General

1. There were two geotechnical reports prepared for this project. Both reports are attached.

Response to Bidder Questions

- 1. Q: Is the clearing work currently being performed part of the Antiquity Greenway project?
 - A: The clearing currently being completed is part of a separate Charlotte Water project. The bids for the clearing work should be based on the construction drawings.
- 2. Q: Will alternatives to the timber piles shown on the plans be considered?

A: Alternatives to timber piles may be considered after the contract award. The submitted bids, however, should be based on the construction documents.

Changes and Clarifications to Specifications

- *1.* This project will be constructed along roadways that are classified as local roads and therefore is exempt from the Davis Bacon requirements in accordance with Section IV of FHWA-1273.
- 2. All references to the 2012 Standard Specifications should be revised to reference the 2018 Standard Specifications.

Changes and Clarifications to Drawings

- The turn-down concrete sidewalk should be installed from station 27+83 to station 32+18 and from station 32+33 to station 33+52. The cross-slope of the concrete sidewalk should match the asphalt trail (2.0%). The riprap shown on the detail *Concrete Sidewalk at Underpass (Turndown Edge)*, sheet C9.1, should be installed adjacent to the channel and/or where directed by the owner/engineer.
- 2. The construction documents reflect a 2% cross-slope for entire trail except for the boardwalk section. The minimum acceptable cross-slope will be 1.5%.
- 3. Replace Plan Sheet C10.2 with the attached plan sheet C10.2 (top of wall elevation revised).

All other terms, conditions and descriptions remain the same. Contractor must acknowledge issuance of this addendum in their Single Prime General Contract Proposal. The bid closing date remains July 2, 2018 at 2:00 PM; the bid opening date remains July 2, 2018 at 2:00 PM.

Attachments:

- 1. Report of Geotechnical Exploration, dated September 2015, prepared by GTA Associates, Inc.
- 2. Results of Soil Test Borings and Environmental Sampling, dated December 15, 2017, prepared by Geoscience Group, Inc.
- 3. Plan Sheet C10.2.

End of Addendum 1

REPORT OF GEOTECHNICAL EXPLORATION

ANTIQUITY GREENWAY Cornelius, North Carolina

September 2015

Prepared For:

Town of Cornelius 21445 Catawba Avenue Cornelius, North Carolina 28031

Attn: Mr. Troy Fitzsimmons

Prepared By:

GTA ASSOCIATES, INC.

Geotechnical and Environmental Consultants 710 Peninsula Lane, Suite B Charlotte, NC 28273 (704) 553-2300 - Office (704) 553-2400 - Facsimile

GTA Job No: 35151653

GTA ASSOCIATES, INC.

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS

A Practicing Geoprofessional Business Association Member Firm

September 22, 2015

Town of Cornelius 21445 Catawba Avenue Cornelius, North Carolina 28031

Attn: Mr. Troy Fitzsimmons

Re: Report of Geotechnical Exploration *Antiquity Greenway* Cornelius, North Carolina GTA Project No. 35151653

Dear Mr. Fitzsimmons:

In accordance with our agreement dated June 23, 2015, GTA Associates, Inc. (GTA) has performed a geotechnical exploration for the proposed pedestrian bridge and walking trail located adjacent to Old Canal Street between Zion Avenue and South Street in Cornelius, North Carolina. The results of the field testing and recommendations regarding design and construction of the proposed pedestrian bridge and walking trail are included in this report. Unless other arrangements are made by the Town of Cornelius, GTA will discard all soil samples within sixty days from the date of this report.

GTA appreciates the opportunity to assist you with this project. Should you have questions or require additional information, please do not hesitate to contact our office.

Sincerely,	AH CAROLINA
GTA ASSOCIA	SOFINCON A
John P. Wills	SEAL 024901
John P. Wille, P.E.	
Associate	ENGINEER L.
(- a sumi	MAN P. WILLING
¢raig Rodano	
Vice President	1

Copies Submitted: (3)

C:\GTA\Project\Dewberry\Antiquity Greenway\Documents\Report.doc Job No. 3515165

710 Peninsula Lane, Suite B, Charlotte, NC 28273

Phone: (704) 553-2300

Fax: (704) 553-2400

♦ Abingdon, MD ♦ Baltimore, MD ♦ Laurel, MD ♦ Frederick, MD ♦ Waldorf, MD ♦ Sterling, VA ♦ Fredericksburg, VA ♦ Malvern, OH
 ♦ Somerset, NJ ♦ NYC Metro ♦ New Castle, DE ♦ Georgetown, DE ♦ York, PA ♦ Quakertown, PA ♦ Towanda, PA ♦ Charlotte, NC ♦ Raleigh, NC

TABLE OF CONTENTS

PAGE

INTRODUCTION1
SITE CONDITIONS1
PROPOSED CONSTRUCTION1
SITE GEOLOGY2
SUBSURFACE EXPLORATION2
SUBSURFACE CONDITIONS
CONCLUSIONS AND RECOMMENDATIONS
Foundations - Pedestrian Bridge 4 Pavement Areas 6 Site Grading 7
ADDITIONAL SERVICES
LIMITATIONS
ASFE—Important Information About Your Geotechnical Engineering Report
Appendix A – Figures Figure No. 1 – Site Location Plan Figure No. 2, 3 and 4 – Exploration Location Plans (3 Sheets)
Appendix B – Soil Boring Logs Notes for Exploration Logs (1 Sheet) Table No. 1 – Summary of Boring Data (1 Sheet) Soil Boring Logs (6 Sheets)
Appendix C – Photographs (3 Sheets)

REPORT OF GEOTECHNICAL EXPLORATION ANTIQUITY GREENWAY CORNELIUS, NORTH CAROLINA SEPTEMBER 2015

INTRODUCTION

The Town of Cornelius plans to construct a new walking trail with a pedestrian bridge located adjacent to Old Canal Street in Cornelius, North Carolina. The project will begin at Zion Avenue just north of its intersection with Market Street and proceed along the west side of Old Canal Street in the northeast direction across South Street to southwest of the existing Davidson Parks and Recreation Department Building. Please refer to the <u>Site Location Plan</u> included as Figure 1 in Appendix A for the approximate location of the site.

GTA Associates, Inc. (GTA) was retained to perform a geotechnical subsurface exploration of the project site to characterize the general subsurface conditions along the proposed walking trail. The scope of this study included a field exploration and engineering analysis. Included in our field exploration were 6 Standard Penetration Test (SPT) borings. Conclusions and recommendations regarding the site development were derived from the engineering analysis of the field data.

SITE CONDITIONS

The proposed site is currently a permanent utility easement with tall grass and overgrown weeds along with areas of dense tree growth. There are both underground utilities and overhead power lines located in the vicinity of the proposed walking trail. The entire length of the walking trail consists of approximately 3,500 linear feet. Specific elevations were not provided at this time; however, the site topography slopes gently downward in the northeast direction along the proposed trail. Please refer to the photographs included in Appendix C for more detailed information regarding the existing site conditions.

PROPOSED CONSTRUCTION

Based on the preliminary site plans prepared by Dewberry, the proposed construction will include a pedestrian bridge crossing over South Prong West Branch Rocky River as well as an asphalt paved walking trail. Based on our communications with Dewberry and review of the project plans, the pedestrian bridge will be a cast-in-place concrete low-water structure with design live loads of "H5 AASHTO Design Vehicle" for maintenance vehicles and 90 pounds per square foot (psf) for pedestrian traffic.

SITE GEOLOGY

The site is located in the Charlotte Belt of the Piedmont Plateau Geologic Province. According to the *Geologic Map of North Carolina* (1985), the site is reportedly underlain by Metamorphosed Quartz Diorite (PzZq), locally pinkish gray, foliated to massive. Ground elevations within the Piedmont Plateau vary from approximately 400 feet above sea level in the east to 2,000 feet in the west.

The typical residual soil profile consists of fine-grained soils (clays/silts) near the surface, where soil weathering is more advanced, underlain by more coarse-grained soils (sandy silts/silty sands) with depth. The boundary between the soil and rock is not sharply defined. This transitional zone, termed weathered rock, is normally found overlying the parent bedrock. The degree of weathering is facilitated by fractures, joints, and by the presence of less resistant rock types. Therefore, the profile of the weathered rock and hard rock is quite irregular and erratic, even over short horizontal distances. Lenses, boulders, hard rock, and zones of weathered rock are often encountered within the soil mantle, well above the general bedrock level.

The topography of the Piedmont Plateau consists of well-rounded hills and long rolling ridges with a northeast-southwest trend. This rolling topography is the result of streams flowing across and acting on rocks of unequal hardness. The Piedmont Plateau region is underlain by older crystalline (metamorphic and igneous) rock formations that trend northeast-southwest and vary greatly in their resistance to weathering and erosion. The major streams generally flow across these rock structures. Please refer to the referenced publications for a more detailed description of the geologic units.

SUBSURFACE EXPLORATION

For this exploration, six (6) SPT borings, designated as B-1 through B-6, were drilled in the areas of the proposed development. The approximate locations of the borings are shown on the attached <u>Exploration Location Plans</u> presented as Figures 2, 3 and 4 in Appendix A. The soil test boring locations were selected by Dewberry and field located by GTA using existing site features and utilities as references for measuring distances. The borings have not been surveyed. Therefore, the boring location should be considered approximate.

Borings B-1 through B-6 were drilled to depths ranging between 10 and 20 feet below the existing ground surface with an ATV-mounted CME-550 drilling rig using hollow-stem augers. Standard Penetration Testing was performed in the boreholes with soil samples obtained at approximate 2 ¹/₂-foot intervals in the upper 10 feet and then at 5-foot intervals thereafter.

Samples collected from the borings were submitted to GTA's laboratory for visual classification. Material descriptions provided on the logs are visual approximations in accordance with the Unified Soil Classification System (USCS) and the American Association of State Highway and Transportation Officials (AASHTO) classification system. Logs of the borings are included in Appendix B.

SUBSURFACE CONDITIONS

A layer of topsoil approximately 1 to 4 inches thick was encountered at the surface of Borings B-1 through B-6. Beneath the topsoil in Borings B-1, B-3, B-4, B-5 and B-6, existing fill material was encountered to depths ranging from approximately 3.5 to 20 feet below the existing ground surface. The existing fill encountered in the borings generally consists of sandy lean clay, sandy silt and silty sand. SPT 'N' values in the existing fill soils ranged from 2 to 15 bpf, indicating very soft to stiff and very loose relative consistency. The existing fill soils observed in the borings was relatively free of organics and construction debris; with the exception of B-1 where asphalt was encountered at a depth of approximately 13.5 feet below the existing ground surface.

Underlying the existing fill soils at Borings B-5 and B-6, alluvial (creek deposited) soils were encountered at depths ranging from approximately 8.5 to 13.5 feet below the existing ground surface. The alluvial soils generally consist of sandy clay and silty clayey sand. SPT 'N' values in the alluvial soils ranged from 2 to 4 bpf, indicating soft and very loose relative consistency.

Beneath the topsoil at Boring B-2, underlying the existing fill soils at Borings B-3 and B-4 and below the alluvial soils at Borings B-5 and B-6, residual soils were encountered. The residual soils generally consist of sandy lean clay, sandy silt, and clayey/silty sand. SPT 'N' values in the clayey silty soils ranged from 7 to 15 bpf, indicating medium stiff to stiff relative consistency. SPT 'N' values in the silty sandy soils ranged from 15 to 40 bpf, indicating medium dense to dense relative consistency. The residual materials were generally classified as CL, ML, and SM per the USCS and as A-2-4, A-4, A-6, and A-7-6 per the AASHTO classification system.

Groundwater was encountered at Borings B-5 and B-6 at depths ranging from approximately 4.3 and 9.4 feet below the existing ground surface. The remaining borings were dry when groundwater level measurements were attempted at the termination of drilling. Boring cave-in depths ranged from approximately 5 to 18 feet below the existing ground surface. The boring cave-in depths can be an indication of the groundwater level at or near the boring cave-in depth or may result from the soil falling in as the drilling equipment is removed from the borehole upon its completion. Please be advised that groundwater levels are expected to fluctuate with changes in precipitation, drainage, and other factors. Please refer to the boring logs in Appendix B for further information.

CONCLUSIONS AND RECOMMENDATIONS

Based upon the results of this exploration, it is GTA's opinion that the proposed construction is feasible, given that the geotechnical recommendations are followed, and that the standard level of care is maintained during construction. Please note that the presence of the very loose to loose and very soft existing fill soils and alluvial soils will impact the design and construction of the proposed development and associated costs. A discussion of GTA's preliminary assessment and conclusions with respect to the proposed construction is presented in the following paragraphs.

1. Existing Fill/Alluvial Soils

Existing fill soils were encountered in Borings B-1 and B-3 through B-6 along the proposed walking trail to depths ranging from approximately 3.5 to 20 feet below the existing ground surface. In general, the existing fill soils consist of very soft to stiff sandy/clayey silt, sandy lean clay and silty sand. Standard Penetration Testing (SPT) 'N' values in the existing fill soils ranged from 2 to 15 blows per foot (bpf). Very loose near-surface fill soils were encountered at Boring B-5 in the upper 3.5. In addition, soft existing fill soils were encountered in Boring B-1 at a depth ranging from approximately 8 to 20 feet below the existing ground surface.

In addition, very loose and very soft alluvial soils were encountered in Borings B-5 and B-6 to depths ranging from approximately 8.5 to 13.5 feet. Standard Penetration Testing (SPT) 'N' values in the alluvial soils ranged from 2 to 4 blows per foot (bpf).

Based on the boring data, it appears that the existing fill at Borings B-1, B-5 and B-6 were placed with little or no compactive effort. Therefore, depending on final design grades along the walking trail, GTA recommends undercutting and/or recompacting the upper 2 feet of very soft to soft near-surface soils. A thorough field evaluation should be performed during construction to further access the suitability of the existing fill. This evaluation should consist of stripping the topsoil/rootmat, proofrolling the subgrade soils, and evaluating the near-surface subgrade soils for any soft, wet, or unsuitable soils. Any soft or unsuitable materials will require removal and replacement with controlled, compacted fill, as necessary.

2. <u>Foundations – Pedestrian Bridge</u>

Based on the results of Boring B-5 performed in the vicinity of the proposed pedestrian bridge, very loose existing fill soils were encountered in the upper 3.5 feet. In addition, very soft and very loose alluvial soils were encountered at Borings B-5 and B-6 below the existing fill soils to depths ranging from approximately 9 to 13 feet below the existing ground surface. Therefore, GTA recommends the following alternative recommendations to provide adequate foundation support for the pedestrian bridge.

Alternative 1: Driven Timber Piles

A driven timber pile foundation can provide proper support of the pedestrian bridge. Timber piles have the advantage of being easy to handle, easy to cut off, relatively inexpensive, readily available and naturally tapered. The timber piles should extend through the variable density soils to bear in competent residual soils. Pile driving should terminate when adequate bearing material is reached to prevent damage to the pile. Due to irregularities in the soil conditions, variations in the pile tip elevations, even between adjacent piles, should be expected.

One typically available timber pile is an eight-inch tip Southern Pine that can be designed for an allowable bearing capacity of up to 25 tons per pile, as determined by the North Carolina State Building Code, Section 1811.3. The timber piles should be installed in accordance with the North Carolina State Building Code and ASTM D 25. Based on the soil conditions encountered, we anticipate pile lengths on the order of 25 to 30 feet may be required. Borings B-5 and B-6 were extended to depths of 10 and 20 feet below the existing ground surface. Therefore, deeper borings may be required to further evaluate the soil conditions below a depth of 20 feet.

The pile hammer should be compatible with the type and capacity of the pile system selected. We recommend that a proper cushion system be located between the pile head and the ram, and be compatible with the pile type and hammer size. All piles should be driven to a specified penetration resistance as outlined by the North Carolina Building Code.

Alternative 2: Geo-Pier Foundations

An alternative to driven timber piles is the implementation of the Geopier system. The Geopier system consists of a proprietary soil improvement method that allows the use of conventional spread footings at higher than typical bearing pressures. Geopier elements consist of highly densified, well-graded crushed stone placed in pre-drilled holes. The crushed stone is densified using a special high energy impact hammer with a 45 degree bevel tamper. The bevel tamper transfers the impact energy down into the sides of the hole as it compacts the crushed stone. This tamping action pre-stresses the soils adjacent to the Geopier element which provides significant lateral confinement to the Geopier element.

Based upon a preliminary review of the data, footings supported by Geopier elements can be designed using a bearing pressure of 3,000 to 4,000 pounds per square foot (psf). The conventional spread footings can be sized using these values. As previously indicated, groundwater was encountered in Borings B-5 and B-6 at depths ranging from approximately 4 to 9 feet below the existing ground surface. Therefore, temporary casing will likely be required to prevent the hole from caving in. Should Geopiers be implemented, the contractor should provide design build services.

3. <u>Pavement Areas</u>

GTA understands that a flexible asphalt pavement will be used for the walking trail. GTA recommends the following pavement section be used for the walking trail. This section was designed based on an assumed traffic volume of one 6-ton capacity vehicle per day, in accordance with AASHTO methods for low volume pavement design:

Flexible Pavement Section

2.0-inch Bituminous Concrete Surface Course (SF)6.0-inch Graded Aggregate Base (GAB) subbase,12.0-inch stable compacted subgrade (AASHTO A-4 or more granular)

This preliminary design section assumes that the pavement subgrade and aggregate base course materials have been uniformly compacted to at least 95 percent of the Standard Proctor maximum dry density. Pavement subgrade and aggregate base course stone materials not meeting the above mentioned requirements and compacted to less than the recommended levels will likely result in premature pavement distress. The above referenced section is not designed to carry heavy construction traffic.

GTA anticipates that the proposed pavement areas along the walking trail will be constructed within approximately one to three feet of the existing grade. The borings drilled along the proposed walking trail generally encountered variable density existing fill soils and native residual soils consisting of medium stiff to stiff fine-grained silts and very loose silty sands in the upper 5 feet.

It is recommended that the upper 12 inches of pavement subgrade be constructed with soils meeting the following characteristics:

Liquid Limit (AASHTO T-89)	40 or less
Plastic Index (AASHTO T-89, T-90)	12 or less
Subgrade	CBR 5 minimum

Based on GTA's test borings, the granular/non-plastic soils (USCS ML and SM) are likely to meet these criteria, and are considered suitable for pavement support. The more fine-grained silty/clayey soils (USCS ML and CL) may not meet requirements for subgrade, and are not considered suitable for direct pavement support. Therefore, depending on final design grades, some undercutting and/or recompaction of the very soft to soft and very loose to loose near-surface soils should be anticipated along the proposed walking trail. Undercut depths below 2 feet are not anticipated along the proposed walking trail. Over-excavation or in-place stabilization, such as Mirafi 500X or approved equivalent, will be required where these materials are present at or near the subgrade. This should be further evaluated in the field during site grading. A contingency for subgrade preparation should be considered. Over-excavations should be backfilled with suitable granular fill material.

GTA recommends that a testing program, including moisture-density relationship (proctor), plasticity, and CBR testing be performed during grading. Prior to construction of pavement sections, the pavement subgrade should be proof-rolled with a loaded tandem-axle dump truck under the direct supervision of the geotechnical engineer to verify stability. Unstable soil should be over-excavated to a stable bearing layer. Grades may be reestablished with approved, controlled, compacted granular fill.

4. <u>Site Grading</u>

Based on the information provided to us, we anticipate that site grading will consist of cut and fill depths of less than 3 feet to establish final design grades along the proposed walking trail. However, as previously indicated, very soft to soft and very loose to loose near-surface soils were encountered in the upper 5 feet at Borings B-5 and B-6. Some undercutting and/or recompaction of the very soft to soft and very loose existing fill and soft native nearsurface soils should be performed as directed by the project geotechnical engineer.

Prior to the placement of fill, where required, the existing subgrade surface should be stripped and grubbed to remove all surface vegetation, topsoil/rootmat, and other deleterious matter. GTA anticipates a stripping thickness in the range of 6 to 12 inches along a majority of the walking trail. However, stripping thickness in upward of 12 inches should be anticipated in some areas of the site, particularly in low-lying areas or in swales. The actual stripping thickness will be dependent on soil moisture, construction traffic disturbance, and contractor care.

After stripping, fill subgrade should be proof-rolled with a loaded 10-wheel tandem-axle dump truck. The proof-rolling should be observed by a geotechnical engineer or their qualified representative. Any soft, wet, or otherwise unsuitable soils should be dried and recompacted or removed prior to placement of fill. No fill should be placed until the subgrade is approved by the geotechnical engineer. In addition, any existing fill left in-place at the pavement subgrade should be evaluated by GTA. Localized undercutting and replacement of soft and very loose near-surface soils will be required.

Off-site soils meeting AASHTO classification A-4 or more granular material are suitable for use as structural fill. The on-site fine-grained soils may be suitable for use as structural fill. If plans are to reuse the existing on-site soils for structural fill, moisture conditioning of the soils will likely be required during grading activities and prior to construction.

To minimize the economic impact associated with poor workability and/or trafficability of wet subgrade soils due to moisture sensitive soils, GTA recommends construction during the dry season to reduce the effort and cost required for drying of the wet soils. GTA recommends that a contingency be established for drying and/or over-excavating and replacing unsuitable soils.

Material selected for structural fill should be free of deleterious materials, and approved by the geotechnical engineer. Structural fill should be placed in lifts not to exceed 8 inches in thickness, and compacted to 95 percent of its Standard Proctor maximum dry density (ASTM D-698). Fill construction should be monitored by a full-time soils technician under the direct supervision of a registered geotechnical engineer. All compactive effort should be verified by in-place density testing.

ADDITIONAL SERVICES

We recommended that during construction of the subject project, a geotechnical engineer be retained to provide observation and testing services for the following items.

- Review final site and architectural plans to evaluate if they conform with the intent of this report.
- Observe and test preparation of the pavement areas.
- Provide testing observation and services during fill placement to evaluate if the work is being performed in accordance with the project specifications and intent of this report.
- Review foundation construction for compliance with the project drawings and the intent of this geotechnical report.

LIMITATIONS

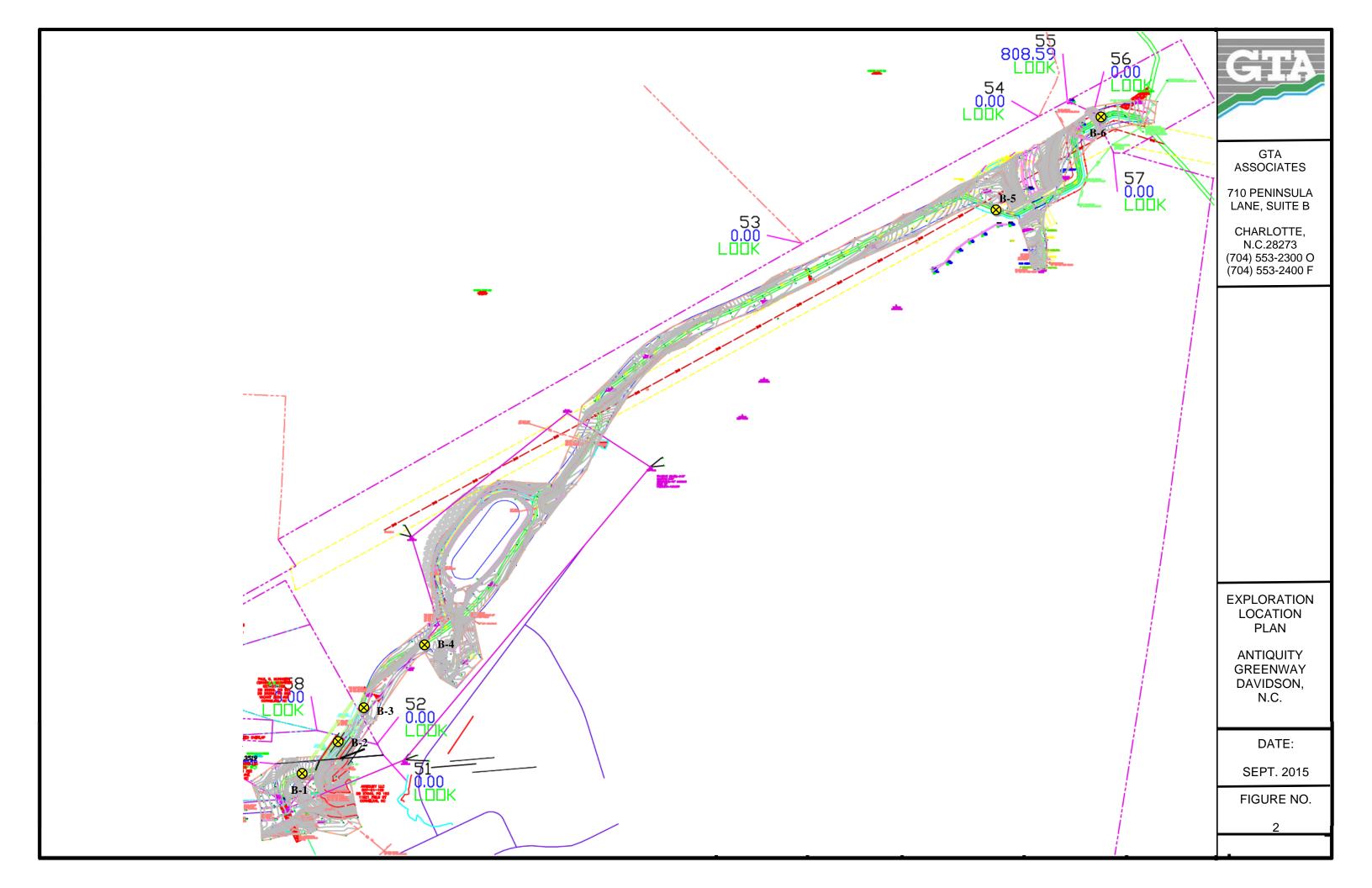
This report has been prepared for the exclusive use of Dewberry and the Town of Cornelius in accordance with generally accepted geotechnical engineering practice. No warranty, express or implied, is made.

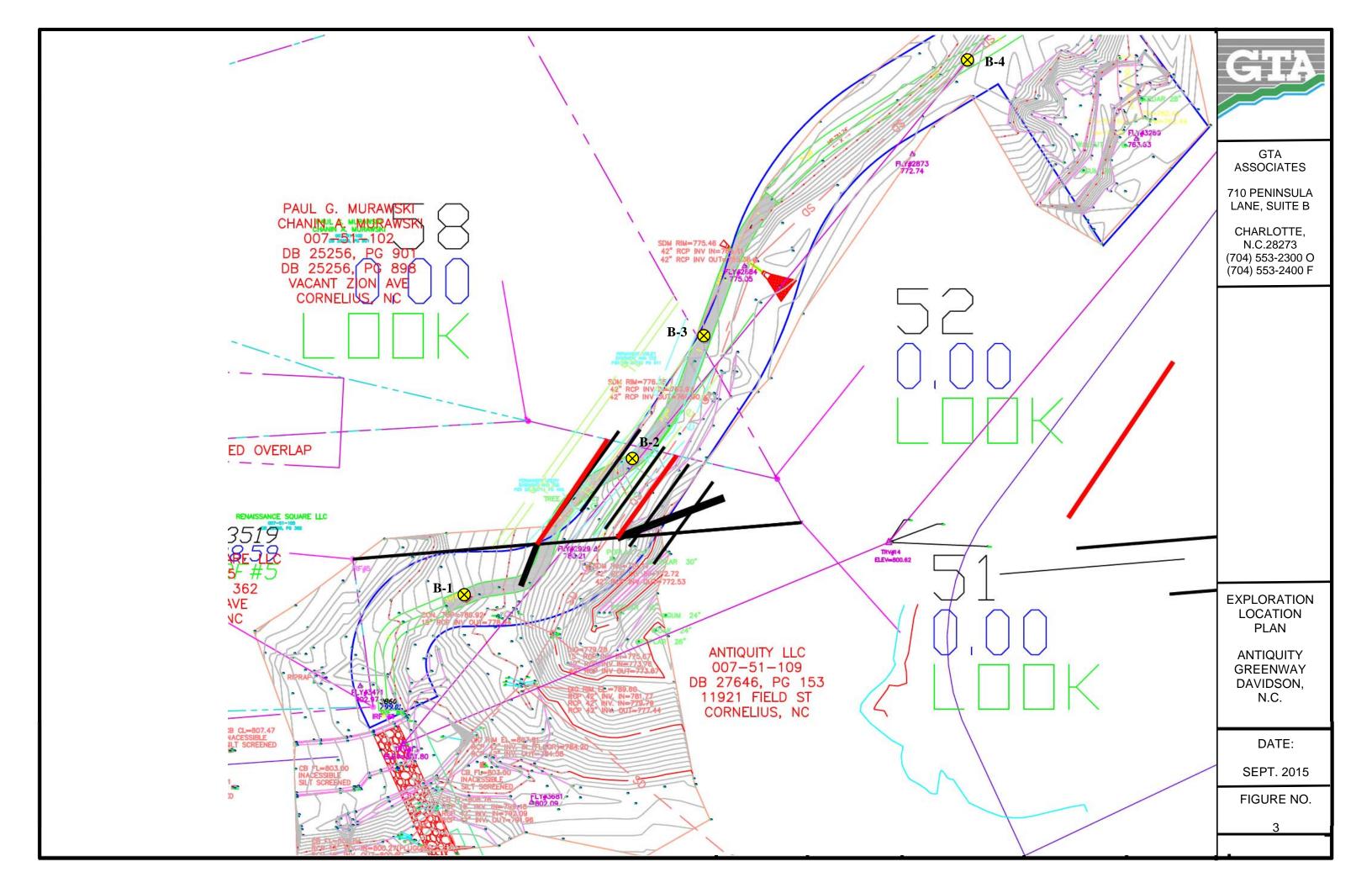
The analysis and recommendations contained in this report are based on the data obtained from limited observation and testing of the surface materials. The borings indicate soil conditions only at specific locations and times, and only to the depths penetrated. They do not necessarily reflect strata variations that may exist between boring locations. Consequently, the analysis and recommendations must be considered preliminary until the subsurface conditions can be verified by direct observation at the time of construction. If variations in subsurface conditions from those described are noted during construction, recommendations in this report may need to be re-evaluated.

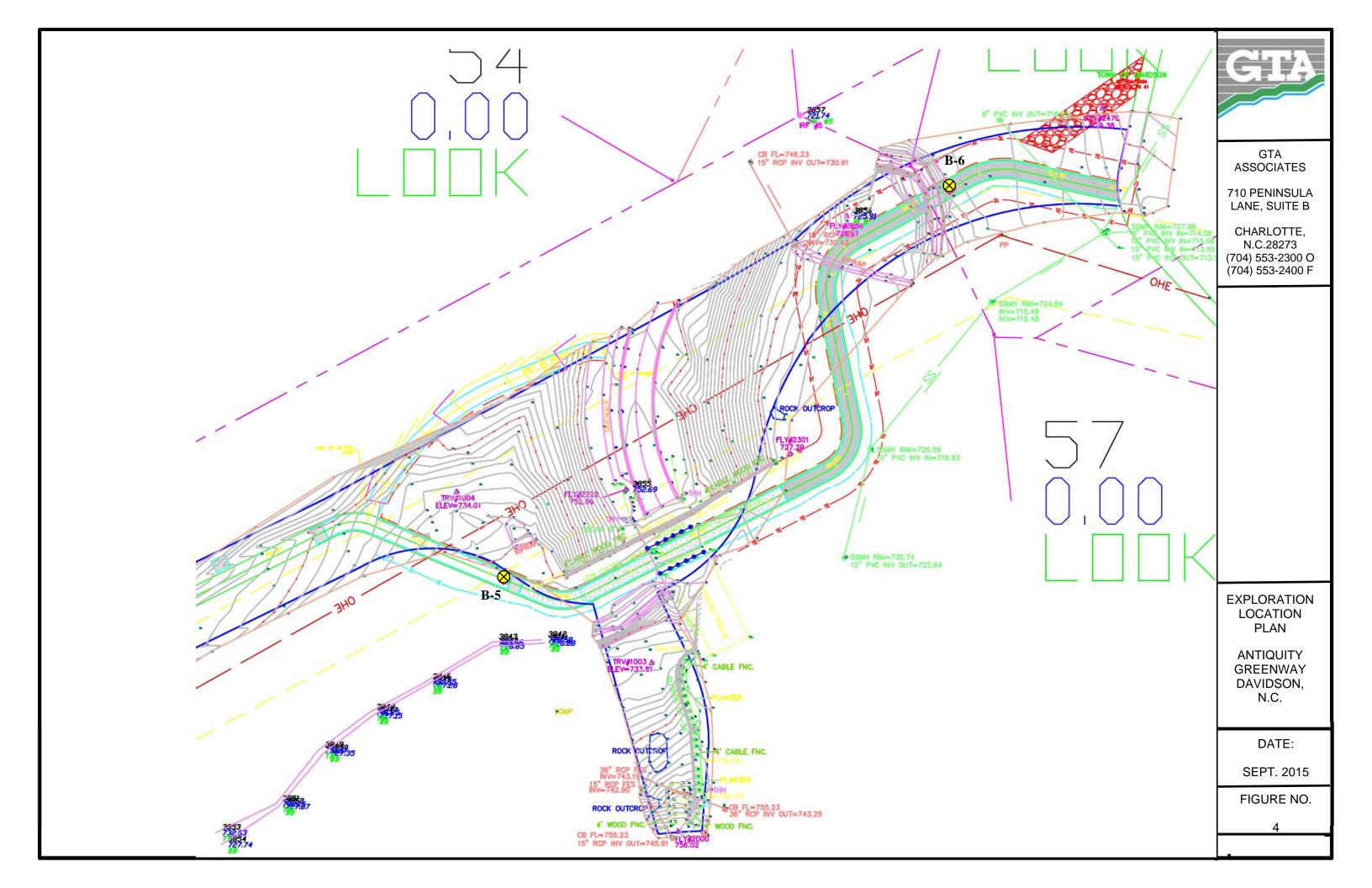
In the event that any changes in the nature, design, or location of the pedestrian bride or walking trail are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report are verified in writing. GTA Associates, Inc. is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or reuse of the subsurface data or engineering analysis without the express written authorization of GTA Associates, Inc.

In accordance with the guidelines of ASFE/The Association of Engineering firms practicing in the Geosciences, it is recommended that GTA Associates, Inc. be retained to provide continuous soils engineering services for this project. Participation of GTA will facilitate compliance with GTA's recommendations, and allow changes to be made in these recommendations, in the event that subsurface conditions are found to vary from those anticipated prior to the start of construction.

This report and the attached logs are instruments of service. If certain conditions or items are noted during our investigation, GTA Associates, Inc. may be required by prevailing statutes to notify and provide information to regulatory or enforcement agencies. GTA Associates, Inc. will notify our Client should a required disclosure condition exist.


This report was prepared by GTA Associates, Inc. (GTA) for the sole and exclusive use of GTA Associates, Inc., Dewberry and the Town of Cornelius. Use and reproduction of this report by any other person without the expressed written permission of GTA, Dewberry and the Town of Cornelius is unauthorized and such use is at the sole risk of the user.


35151653


GTA ASSOCIATES, INC.

APPENDIX A FIGURES

APPENDIX B SOIL SAMPLE LOGS

NOTES FOR EXPLORATION LOGS

KEY TO USCS TERMINOLOGY AND GRAPHIC SYMBOLS

	SYMBOLS						
	GRAPHIC	LETTER					
	GRAVEL AND GRAVELLY	CLEAN GRAVEL		GW			
	SOILS	(LESS THAN 15% PASSING		GP			
COARSE- GRAINED	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO.	GRAVELS V FINES		GM			
SOILS	4 SIEVE	(MORE THAN 15% PASSING	(MORE THAN 15% PASSING THE NO. 200 SIEVE)				
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE	SAND AND	CLEAN SAM	NDS		SW		
SIZE	SANDY SOILS	(LESS THAN 15% PASSING T		SP			
	MORE THAN 50% OF COARSE FRACTION	SANDS WI FINES		SM			
	PASSING ON NO. 4 SIEVE	(MORE THAN 15% PASSING		SC			
			SILTS AND LEAN CLAYS LIQUID LIMIT LESS THAN 50		ML		
FINE-	SIL	T OR CLAY			CL		
GRAINED SOILS MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE	(<15% RETAINEI SILT OR CLAY V	O ON THE NO. 200 SIEVE)			OL		
	SANDY OR GR	NED ON THE NO. 200 SIEVE) AVELLY SILT OR CLAY	ELASTIC SILTS AND FAT CLAYS LIQUID LIMIT		MH		
	(>30% RETAINEI	D ON THE NO. 200 SIEVE)			СН		
			GREATER THAN 50		ОН		
		PT					

NOTE: DUAL SYMBOLS ARE USED TO INDICATE COARSE-GRAINED SOILS WHICH CONTAIN AN ESTIMATED 5 TO 15% FINES BASED ON VISUAL CLASSIFICATION OR BETWEEN 5 AND 12% FINES BASED ON LABORATORY TESTING; AND FINE-GRAINED SOILS WHEN THE PLOT OF LIQUID LIMIT & PLASTICITY INDEX VALUES FALLS IN THE PLASTICITY CHART'S CROSS-HATCHED AREA. FINE-GRAINED SOILS ARE CLASSIFIED AS ORGANIC (OL OR OH) WHEN ENOUGH ORGANIC PARTICLES ARE PRESENT TO INFLUENCE ITS PROPERTIES. LABORATORY TEST FESTING TO SUPPLIEMENT SOIL CLASSIFICATION BY THE VISUAL MANUAL PROCEDURES OF ASTM D 2488

LABORATORY TEST RESULTS ARE USED TO SUPPLEMENT SOIL CLASSIFICATION BY THE VISUAL-MANUAL PROCEDURES OF ASTM D 2488. ADDITIONAL TERMINOLOGY AND GRAPHIC SYMBOLS

	DESCRIP	GRAPHIC SYMBOLS	
	TOPSOI	$\frac{\lambda}{2} \frac{\sqrt{2} \int_{X} - \sqrt{2} \int$	
ADDITIONAL DESIGNATIONS	MAN MADE		
	GLACIAL 1		
	COBBLES AND B	0.0.0.0000	
	DESCRIPTION	"N" VALUE	
RESIDUAL SOIL DESIGNATIONS	HIGHLY WEATHERED ROCK	50 TO 50/1"	$\begin{smallmatrix} \Delta & \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta & \Delta \\ \Delta & \Delta &$
	PARTIALLY WEATHERED ROCK	$\begin{smallmatrix} \land \land$	

COARSE-GRAINED SOILS (GRAVEL AND SAND)

DESIGNATION	BLOWS PER FOOT (BPF) "N"
VERY LOOSE	0 - 4
LOOSE	5 - 10
MEDIUM DENSE	11 - 30
DENSE	31 - 50
VERY DENSE	>50

NOTE: "N" VALUE DETERMINED AS PER ASTM D 1586

FINE-GRAINED SOILS (SILT AND CLAY)

CONSISTENCY	BPF "N"
VERY SOFT	<2
SOFT	2 - 4
MEDIUM STIFF	5 - 8
STIFF	9 - 15
VERY STIFF	16 - 30
HARD	>30

NOTE: ADDITIONAL DESIGNATIONS TO ADVANCE SAMPLER INDICATED IN BLOW COUNT COLUMN: WOH = WEIGHT OF HAMMER WOR = WEIGHT OF ROD(S)

SAMPLE TYPE

DESIGNATION	SYMBOL
SOIL SAMPLE	S-
SHELBY TUBE	U-
ROCK CORE	R-

WATER DESIGNATION

DESCRIPTION	SYMBOL
ENCOUNTERED DURING DRILLING	¥
UPON COMPLETION OF DRILLING	Ţ
24 HOURS AFTER COMPLETION	

NOTE: WATER OBSERVATIONS WERE MADE AT THE TIME INDICATED. POROSITY OF SOIL STRATA, WEATHER CONDITIONS, SITE TOPOGRAPHY, ETC. MAY CAUSE WATER LEVEL CHANGES.

WATER LEVEL (ft): Try PROJECT: Anitquity Greenway DATE: 9-4-2015 PROJECT NO.: 35151653 17.9 PROJECT LOCATION: Cornelius, North Carolina CAVED (ft): WATER ENCOUNTERED DURING DRILLING (ft) $\stackrel{\searrow}{=}$ **Dry** DATE STARTED: 9-4-2015 GROUND SURFACE ELEVATION: N/A DATE COMPLETED: 9-4-2015 DRILLING CONTRACTOR: HPC Land Services DATUM: N/A EQUIPMENT: D50-T DRILLER: ER DRILLING METHOD: SPT LOGGED BY: ROC SAMPLING METHOD: HSA CHECKED BY: JPW SAMPLE BLOWS/6 inches ELEVATION (ft.) Ē SAMPLE NUMBER SAMPLE DEPTH (ft.) SAMPLE RECOVERY (i DEPTH (ft.) GRAPHIC SYMBOL N (blows/ft.) USCS DESCRIPTION REMARKS TS ¥ ⊻ Topsoil (2") Brown, Red, Gray, Olive, Moist to Wet, Medium Stiff to FILL SS-1 5-3-4 7 1.0 10 Soft Micaceous Sandy SILT 4 SS-2 3.5 18 4-4-4 8 SS-3 6.0 8 3-2-3 5 8 SS-4 0-1-1 2 8.5 18 12 Asphalt Observed in Sample SS-5 13.5 2-2-2 2 4 16 FILL Brown, Red, Gray, Wet, Soft Micaceous Silty Sandy SS-6 18.5 1-2-2 18 4 Lean CLAY 20 Boring Terminated @ 20.0 Feet. 24 NOTES:

GEO-TECHNOLOGY ASSOCIATES, INC. 710 Peninsula Lane, Suite B Charlotte, NC 28273

LOG OF BORING NO. B-1

Sheet 1 of 1

Sheet 1 of 1

PRO		OJECT	ECT: Anit NO.: 3515 ION: Cori	51653			olina		WATER LEVEL (ft): DATE: <u>9-4-2015</u> CAVED (ft): <u>5.0</u>	
DA DRILLING DR	TE CO G COI	OMPLET NTRACT DRILL G METH	TED: 9-4-2 TED: 9-4-2 TOR: HPC LER: ER HOD: SPT HOD: HSA	2015 Cand	l Servi	ces			WATER ENCOUNTERED DURING DRILLING (ft) GROUND SURFACE ELEVATION: DATUM: EQUIPMENT: LOGGED BY: CHECKED BY:	N/A N/A D50-T ROC
SAMPLE NUMBER	SAMPLE DEPTH (ft.)	SAMPLE RECOVERY (in.)	SAMPLE BLOWS/6 inches	N (blows/ft.)	ELEVATION (ft.)	DEPTH (ft.)	NSCS	GRAPHIC SYMBOL	DESCRIPTION	DEMARKS
									DESCRIPTION	REMARKS
								14 14 14 14		
SS-1	1.0	18	5-5-7	12		-	CL		Tan, Orange, Gray, Stiff Silty Fine-Medium Sandy Lean CLAY	
						-				
SS-2	3.5	18	4-7-8	15		4 -				
						-				
SS-3	6.0	18	5-4-5	9						
						8-				
SS-4	8.5	18	4-5-6	11		-				
						-			Boring Terminated @ 10 Feet.	
						- 12 – -				
						- 16 -				
						- 20 -				
						24 -				
NOTES	S:		1					1		
ſe			GEO-T ASSO						LOG OF BO	RING NO. B-2

710 Peninsula Lane, Suite B Charlotte, NC 28273

WATER LEVEL (ft): T $\overline{\mathbf{A}}$ PROJECT: Anitquity Greenway DATE: ______ PROJECT NO.: 35151653 CAVED (ft): 5.5 PROJECT LOCATION: Cornelius, North Carolina WATER ENCOUNTERED DURING DRILLING (ft) $\stackrel{\searrow}{=}$ **Dry** DATE STARTED: 9-4-2015 GROUND SURFACE ELEVATION: N/A DATE COMPLETED: 9-4-2015 DRILLING CONTRACTOR: HPC Land Services DATUM: N/A EQUIPMENT: D50-T DRILLER: ER DRILLING METHOD: SPT LOGGED BY: ROC SAMPLING METHOD: HSA CHECKED BY: JPW SAMPLE RECOVERY (in.) SAMPLE BLOWS/6 inches ELEVATION (ft.) SAMPLE NUMBER SAMPLE DEPTH (ft.) DEPTH (ft.) GRAPHIC SYMBOL N (blows/ft.) USCS DESCRIPTION REMARKS -TS Topsoil (4") FILL Brown, Red, Wet, Stiff Micaceous Silty Fine-Medium SS-1 1.0 3-4-10 18 14 Sandy Lean CLAY Brown, Orange, White, Wet, Medium Stiff, Micaceous ML 4 SS-2 2-3-3 Fine-Medium Sandy SILT 3.5 18 6 SS-3 6.0 18 3-3-3 6 8 SS-4 3-3-4 7 8.5 18 Boring Terminated @ 10.0 Feet. 12 -16 20 24

NOTES:

GEO-TECHNOLOGY ASSOCIATES, INC. 710 Peninsula Lane, Suite B Charlotte, NC 28273

LOG OF BORING NO. B-3

PROJECT: Anitquity Greenway WA PROJECT NO.: 35151653 PROJECT LOCATION: Cornelius, North Carolina WATER ENCOUNTERED DURING DRILLING (ft) $\stackrel{\searrow}{=}$ **Dry** DATE STARTED: 9-4-2015 GROUND SURFACE ELEVATION: N/A DATE COMPLETED: 9-4-2015 DRILLING CONTRACTOR: HPC Land Services DATUM: N/A EQUIPMENT: D50-T DRILLER: ER DRILLING METHOD: SPT LOGGED BY: ROC SAMPLING METHOD: HSA CHECKED BY: JPW SAMPLE RECOVERY (in.) SAMPLE BLOWS/6 inches ELEVATION (ft.) SAMPLE NUMBER SAMPLE DEPTH (ft.) DEPTH (ft.) GRAPHIC SYMBOL N (blows/ft.) USCS DESCRIPTION REMARKS TS 衮 Topsoil (3") FILL Tan, Orange, Stiff Micaceous Sandy Lean CLAY SS-1 1.0 12 5-7-8 15 4 SS-2 3.5 18 5-6-7 13 FILL Gray, Tan, Wet, Medium Stiff Silty Fine-Medium Sandy SS-3 7 6.0 18 5-4-3 Lean CLAY 8 ML Tan, Orange, White, Wet, Medium Stiff Micaceous Fine-SS-4 5-3-4 7 8.5 18 Medium Sandy SILT Boring Terminated @ 10.0 Feet. 12 -16 20 24

NOTES:

GEO-TECHNOLOGY ASSOCIATES, INC. 710 Peninsula Lane, Suite B Charlotte, NC 28273

LOG OF BORING NO. B-4

Sheet 1 of 1

. B-4			Sheet 10
ATER LEVEL (ft): DATE: CAVED (ft):	9-4-2015	<u> </u>	

WATER LEVEL (ft): 4.3 $\overline{\mathbf{A}}$ PROJECT: Anitquity Greenway DATE: 9-4-2015 PROJECT NO.: 35151653 6.7 PROJECT LOCATION: Cornelius, North Carolina CAVED (ft): WATER ENCOUNTERED DURING DRILLING (ft) 4.3 DATE STARTED: 9-4-2015 GROUND SURFACE ELEVATION: N/A DATE COMPLETED: 9-4-2015 DRILLING CONTRACTOR: HPC Land Services DATUM: N/A DRILLER: ER EQUIPMENT: D50-T DRILLING METHOD: SPT LOGGED BY: ROC SAMPLING METHOD: HSA CHECKED BY: JPW SAMPLE BLOWS/6 inches SAMPLE RECOVERY (in.) ELEVATION (ft.) SAMPLE NUMBER SAMPLE DEPTH (ft.) GRAPHIC SYMBOL DEPTH (ft.) N (blows/ft.) USCS DESCRIPTION REMARKS TS Topsoil (4") FILL Tan, Orange, Gray, Moist, Very Loose Micaceous Silty SS-1 2-2-2 1.0 18 4 SAND Gray, Orange, Soft Fine-Coarse Sandy CLAY (Alluvial) 4 V SS-2 3.5 18 0-1-1 2 SS-3 6.0 10 2-2-1 3 8 Gray, Olive, White, Moist, Medium Dense Micaceous SM SS-4 5-7-8 8.5 12 15 Silty Fine-Medium SAND Boring Terminated @ 10.0 Feet. 12 -16 20 24

NOTES:

GEO-TECHNOLOGY ASSOCIATES, INC. 710 Peninsula Lane, Suite B Charlotte, NC 28273

LOG OF BORING NO. B-5

Sheet 1 of 1

Sheet 1 of 1

PRO		OJECT	ECT: Anit NO.: 3515 ION: Cori	51653			olina	I	WATER LEVEL (ft): 9.4 DATE: 9-4-2015 CAVED (ft): 11.2	
DRILLING	TE CO G COI	OMPLE NTRACI DRILI G METH	TED: 9-4-2 TED: 9-4-2 TOR: HPC LER: ER HOD: SPT HOD: HSA	2015 : Lanc	l Servi	ices	T		WATER ENCOUNTERED DURING DRILLING (ft) GROUND SURFACE ELEVATION: DATUM: EQUIPMENT: LOGGED BY: CHECKED BY:	N/A N/A D50-T ROC
SAMPLE NUMBER	SAMPLE DEPTH (ft.)	SAMPLE RECOVERY (in.)	SAMPLE BLOWS/6 inches	N (blows/ft.)	ELEVATION (ft.)	DEPTH (ft.)	nscs	GRAPHIC SYMBOL		251421/2
									DESCRIPTION	REMARKS
							TS	1 S 1 S	Topsoil (1")	
SS-1	1.0	18	2-3-2	5		- -	FILL		Brown, Red, Gray, Moist, Medium Stiff Micaceous Sandy Clayey SILT	
SS-2	3.5	18	1-3-2	5		4 -	FILL		Brown, Wet, Loose Silty Fine-Coarse SAND	
SS-3	6.0	18	0-1-1	2					Gray, Olive, White Wet, Very Loose Micaceous Silty Clayey Fine-Medium SAND (Alluvial)	
SS-4	8.5	18	1-2-2	4		8-	-		<u>-</u>	<u>V</u> _
						12 -	-			
SS-5	13.5	12	20-20-20	40			SM		Gray, Moist, Dense Silty Fine-Medium SAND	
						16 -	-	<u>.114</u>	Boring Terminated @ 15.0 Feet.	
						20 -	-			
						24 _	-			
NOTE	S:									
		λ	GEO-T ASSOC						LOG OF BO	RING NO. B-6
			710 Penin Charlotte	sula La	ne, Suit					Sheet 1 of 1

710 Peninsula Lane, Suite B Charlotte, NC 28273

APPENDIX C PHOTOGRAPHS Town of Cornelius Re: *Antiquity Greenway* Date of Photographs: August 28, 2015 Page 1

Photograph 1: Picture of start of proposed greenway trail from Zion Avenue facing towards B-1.

Photograph 2: Picture of start of proposed greenway trail from Zion Avenue facing towards B-1.

Town of Cornelius Re: *Antiquity Greenway* Date of Photographs: August 28, 2015 Page 2

Photograph 3: Picture of start of proposed greenway trail from Zion Avenue facing towards B-1.

Photograph 4: Picture of start of proposed greenway trail from Zion Avenue facing towards B-1.

Town of Cornelius Re: *Antiquity Greenway* Date of Photographs: August 28, 2015 Page 3

Photograph 5: Picture of proposed greenway trail from South Street facing southwest towards B-5.

Photograph 6: Picture of proposed greenway trail from South Street facing northeast towards B-6.

GEOSCIENCE GROUP

Town of Cornelius 214456 Catawba Avenue Cornelius, North Carolina 28031

Attention: Mr. Troy Fitzsimmons Director, Cornelius PARC Department

Reference: Results of Soil Test Borings and Environmental Sampling Antiquity Greenway – Elevated Boardwalk Cornelius, North Carolina Geoscience Project No. CH17.0175.GE

Geoscience Group, Inc. (Geoscience) has completed the requested soil test borings and environmental sampling for the referenced project. The purpose of this work was to determine the general subsurface conditions along the western portion of the Greenway alignment where an elevated boardwalk will be constructed. This report presents our findings along with our geotechnical recommendations for foundation support of the elevated boardwalk.

PROJECT DESCRIPTION

The South Prong Rocky River/Antiquity Greenway project will involve the construction of approximately 2,800 linear feet of an asphalt paved walkway between Zion Avenue and South Street in Cornelius, North Carolina. Our geotechnical and environmental testing services focused on the elevated boardwalk between station 0+82 and station 4+50. The boardwalk will be elevated up 17 feet above the underlying ground surface elevation. In accordance with the November 29, 2016, *South Prong Rocky River/Antiquity Greenway Construction Documents* prepared by Dewberry Engineers, Inc., micropiles have currently been selected as the foundation support system for the elevated boardwalk. The micropiles will need to be designed in accordance with the AASHTO LRFD bridge design specifications and the LRFD guide specification for the design of pedestrian bridges to resist vertical and lateral service loads of 21.1 kips and 1.3 kips, respectively.

The elevated boardwalk between approximate station 2+25 and station 2+95 is situated in a property that is in the N.C. Brownfields Program (Methods Cleaners, Brownfields Site No. 18023-14-060). The soils on portions of the Methods Cleaners property have been impacted with 4-Isopropyltoluene; 1,2,4 Trimethylbenzene; TPH-GRO; TPH-DRO; and tetrachloroethylene (PCE). Although the soils in the proposed elevated boardwalk work area are not known to be contaminated, previous environmental sampling has determined that groundwater beneath the elevated boardwalk work area is impacted with PCE. The development of this part of the project will need to be completed under the terms of the approved Brownfields Environmental Management Plan (EMP) dated October 26, 2017 prepared by Geoscience.

Telephone 704.525.2003 Facsimile 704.525.2051

SCOPE OF INVESTIGATION

<u>Geotechnical Field Exploration</u>: The subsurface exploration included the execution of nine (9) soil test borings (B-1 through B-9) at the approximate locations shown on the *Boring Location Diagram*, Drawing No. CH17.0175.GE-1, included in the Appendix. The boring locations were established in the field by an engineer from Geoscience using a hand-held GPS unit, the above referenced construction documents and the existing site features as reference. The soil test borings were performed with an ATV mounted CME-550X drill using continuous-flight, hollow stem augers to advance the borings into partially weathered rock (PWR) or to auger refusal. The overall boring depths ranged from approximately 20¼ to 55 feet below the ground surface. Drilling fluid was not used in this process.

Standard Penetration Tests were performed in the soil test borings at designated intervals in general accordance with ASTM D 1586-84. The Standard Penetration Test is used to provide an index for estimating soil strength and density. In conjunction with the penetration testing, split-barrel soil samples were recovered for soil classification and potential laboratory testing. A brief description of the geotechnical field testing procedures and copies of the Test Boring Records are included in the Appendix. Elevations referenced in this report were interpolated from the above referenced construction documents and should be considered approximate.

<u>Environmental Sampling</u>: On November 20, 2017, Geoscience personnel mobilized to the site to screen the cuttings from the nine (9) geotechnical borings (B-1 through B-9). In accordance the approved EMP for the Methods Cleaners Brownfields Site, the cuttings from the borings had been placed in 55-gallon steel drums pending characterization sampling. With the exception of borings B-4 and B-9, one (1) drum of cuttings was present beside each boring. Two (2) drums were located beside Boring B-4, and no drum was present beside boring B-9. It should be noted that groundwater was not encountered at boring B-9.

The soils in each drum were screened for volatile organic compounds (VOCs) using a RAE Systems ppbRAE-3000 photoionization detector (PID). The PID readings were obtained with the meter configured to read both PCE and trichloroethylene (TCE) concentrations. After screening, one (1) soil sample was retrieved from each drum. These collected soil samples (B-1 through B-4, B-4A, and B-5 through B-8) were placed in laboratory-provided containers, packed on ice, and transported in a cooler under appropriate chain-of-custody procedures to Prism Laboratories, Inc. (Prism) of Charlotte, North Carolina for chemical analysis. Each soil sample was analyzed for VOCs by Method 8260. In addition, the soil sample retrieved from drum B-5 (the boring located on the Methods Cleaners Brownfields Site) was analyzed for VOCs using the Toxicity Characteristic Leaching Procedure (TCLP).

GEOTECHNICAL SUBSURFACE FINDINGS

The subsurface conditions at the project site, as indicated by the soil test borings, generally consist of a residual soil profile that has formed from the in-place weathering of the underlying parent bedrock. However, existing fill was encountered in seven (7) of the soil test borings to depths ranging between approximately 3 and 21 feet below the ground surface. The generalized

subsurface conditions are described below and illustrated on the *Generalized Subsurface Profile*, Drawing No. CH17.0175.GE-2, included in the Appendix. For soil descriptions and general stratification at a particular boring location, the respective Test Boring Record should be reviewed. Please note that the stratification lines designating the interface between various layers represent approximate boundaries. The actual transition between different strata across the site will vary in both the horizontal and vertical directions.

<u>Groundcover</u>: Beginning at the ground surface in the majority of the soil test borings, a surface layer of topsoil and roots was encountered to depths ranging from approximately ¹/₄ to ¹/₂ foot. Deeper topsoil deposits are anticipated in the more heavily vegetated and wooded areas of the site. Also, it should be noted that the root systems of large trees can be quite extensive and normally extend 2 to 3 feet below the ground surface.

Existing Fill: Existing fill was encountered in soil test borings B-1, B-2, B-3, B-5, B-6, B-7 and B-8, to depths ranging from approximately 3 to 21 feet below the ground surface. However, it should be noted that existing fill could extend to a greater depth at test location B-1 since this boring encountered auger refusal before penetrating the existing fill. The deeper existing fill encountered in soil test borings B-1 and B-2 appears to be associated with earthwork operations pertaining to the realignment of Zion Avenue and the installation of an erosion control pond between Zion Avenue and Old Canal Street circa 2009/2010. The shallower existing fill encountered in borings B-3, B-5, B-6, B-7 and B-8 appears to be associated with the installation of the below grade storm water conduit. The fill materials generally consist of very silty CLAY, very clayey SILT, clayey SILT and sandy SILT soils with varying amounts of rock fragments, concrete pieces and/or trace organics. The Standard Penetration Test results within the existing fill were erratic and ranged from 3 to 12 Blows Per Foot (BPF).

<u>Residual Soils</u>: Residual soils are present beneath the groundcover and/or existing fill in all the soil test borings performed for this phase of the project with exception to boring B-1. As noted above, soil test boring B-1 encountered auger refusal within existing fill at a depth of approximately 21 feet below the ground surface. When sampled, the residual soils generally consisted of near-surface very silty CLAY, sandy CLAY and very clayey SILT soils that transitioned into clayey SILT, sandy SILT and silty SAND soils with increasing depth below the ground surface. These residual CLAY, SILT and SAND soils, where present, extend to depths ranging from approximately 17 to 47 feet below the ground surface. The Standard Penetration Test results exhibited by these residual soils range from 3 to 78 BPF.

<u>Partially Weathered Rock</u>: Partially weathered rock was initially encountered in soil test borings B-2 through B-7 and B-9 at depths ranging from approximately 17 to 47 feet below the ground surface. These depths to partially weathered rock correspond to elevations ranging from approximately 739 to 758 feet (MSL). For engineering purposes, partially weathered rock is considered any dense residual soil exhibiting a Standard Penetration resistance value in excess of 100 BPF. When sampled, the partially weathered rock generally consists of a silty SAND.

<u>Auger Refusal</u>: Auger refusal was encountered within existing fill at a depth of approximately 21 feet below the ground surface. Generally, auger refusal indicates the presence of dense pockets of debris within existing fill or a buried obstruction.

Auger refusal was encountered within residual soils in soil test borings B-5, B-7, B-8 and B-9 at depths ranging from approximately 20¹/₄ to 32¹/₂ feet below the ground surface. These depths to auger refusal correspond to elevations ranging from approximately 741¹/₂ to 754³/₄ feet (MSL). Generally, auger refusal within residual soils is encountered at bedrock or on top boulders.

<u>Groundwater Observations</u>: Groundwater measurements were attempted at each of the soil test borings performed for this project. Groundwater levels were recorded within the existing fill in soil test borings B-1 and B-2 at the respective depths of $16\frac{1}{2}$ and 16 feet below the ground surface. These groundwater levels appear to have been influenced by trapped water within the existing fill soils that infiltrated the open auger hole during the drilling activities.

Groundwater was also observed in soil test borings B-3, B-4, B-5, B-6, B-7 and B-8 at depths ranging from approximately $5\frac{1}{2}$ to $18\frac{1}{3}$ feet below the ground surface. These depths to groundwater correspond to elevations ranging from $760\frac{3}{4}$ to $768\frac{1}{2}$ feet (MSL). It should be noted that the observed groundwater levels can fluctuate several feet through climatic and seasonal variations.

ENVIRONMENTAL SAMPLING RESULTS

The field screening PID readings are summarized on Table CH17.0175.GE-1: Summary Of Soil Sampling Results, included in the Appendix. As shown, PCE reading ranged from 0 to 573 parts per billion (ppb), while TCE readings ranged from 0 to 554 ppb. It should be noted that although the meter was configured to read concentrations of PCE and TCE, the meter is not specific to those compounds and the presence of other VOCs in the samples will influence the levels recorded in the field.

The results of the laboratory chemical analyses, included in the Appendix of this report, confirmed the presence of VOCs in the cuttings that were detected by the PID meter. As shown on Table CH17.0175.GE-3, PCE was detected in the samples from borings B-1, B-7, and B-8. In addition, low concentrations of petroleum constituents were detected in the samples from borings B-4 and B-8, and trichlorofluoromethane was detected in the sample from B-3. Acetone was detected at very low levels in every sample except B-7. It should be noted that acetone is used by the testing laboratory and it is not uncommon for the prescence of acetone to be a false positive. However, the quality control checks run by the laboratory as part of these analyses do not suggest issues with the acetone results.

CONCLUSIONS AND RECOMMENDATIONS

The soil test borings performed at this site represent the subsurface conditions at the location of the borings only. Due to the prevailing geology and the presence of existing fill, there can be changes in the subsurface conditions over relatively short distances that have not been disclosed by the results of the borings performed.

FOUNDATION SUPPORT

As noted earlier in this report, micropiles are currently selected as the foundation support system for the elevated boardwalk. However, because of the high groundwater readings, variability in the depth to partially weathered rock and rock, and the potential impact of environmental issues, driven timber piles may be a more economically suitable foundation system. We are presenting geotechnical recommendations for both micropiles and driven timber piles; the actual foundation system chosen for this project should be based on its relative merits and economics.

<u>Micropiles</u>: Micropiles are drilled deep foundation elements comprised of high-strength steel casing, rebar and grout. The design (number and spacing) of the micropiles should be done by a qualified foundation contractor who has experience with these types of foundations. However, based on the results of the soil test borings, it appears that the compressive service load of 21.2 kips could be carried by extending the bonded zone of the micropile into dense to very dense residual SAND soils, partially weathered rock or bedrock. The following table (Table CH17.0175.GE-2) presents the anticipated micropile length at each soil test boring location.

Soil Test Boring	Anticipated Micropile Length*
B-1	>21 feet
B-2	32
B-3	37
B-4	30
B-5	25
B-6	25
B-7	20
B-8	25
B-9	20

Table CH17.0175.GE-2

*Anticipated micropile length is from current ground surface elevation

As noted earlier in this report, soil test boring B-1 encountered auger refusal before penetrating existing fill materials present in the western portion of the elevated boardwalk. Therefore, offset soil test borings should be performed adjacent to boring B-1 to determine the anticipated micropile lengths in this area of the elevated boardwalk.

Based on preliminary LPILE analyses, it is anticipated that properly designed and installed vertical micropiles can carry the service lateral load of 1.3 kips and maintain lateral tip deflections below ¹/₄ inch. Geoscience can perform detailed LPILE analyses to determine lateral deflections of vertical micropiles once the size and type of micropile have been selected. Micropiles could also be installed at a batter or concrete pile caps designed to carry the lateral loads.

<u>Driven Timber Piles</u>: Driven timber piles could be used to support the elevated walkway. Based on the results of the soil test borings, it appears that the compressive service load of 21.2 kips could be achieved by driving 8-inch diameter timber piles into the dense to very dense SAND soils or partially weathered rock. The following table (Table CH17.0175.GE-3) presents the anticipated driven timber pile length at each soil test boring location.

Soil Test Boring	Anticipated Timber Pile Length*
B-1	>21 feet
B-2	30
B-3	25
B-4	25
B-5	25
B-6	22
B-7	17
B-8	25
B-9	17

Table CH17.0175.GE-3

*Anticipated timber pile length is from current ground surface elevation

Based on preliminary LPILE analyses, it is anticipated that a vertical 8-inch timber pile driven to capacity can carry the service lateral load of 1.3 kips and maintain a tip deflection below ¹/₄ inch. Detailed LPILE analyses can be performed and provided to the project team if driven timber piles are selected as the foundation support system. Timber piles could also be installed at a batter or concrete pile caps designed to carry the lateral loads.

As noted in the table above, additional soil test borings should be performed in the area of boring B-1 to determine the anticipated pile length in the westernmost portion of the elevation walkway. In addition, due to the apparent presence of debris within the existing fill, the foundation contractor must be prepared to pre-drill the piles through the fill materials and then drive the piles to capacity within the residual soils.

A geotechnical engineer should observe the installation of the driven pile foundations. The geotechnical engineer or his authorized representative should keep accurate records of the pile installation and driving records. These records should reflect the pile driving resistances and depths to which the piles were driven. In addition, it should be verified that the pile driving equipment is in proper operating condition and that the piles are free of any visual defects prior to and during installation.

DISPOSAL OF CUTTINGS

The PCE in the groundwater beneath the project area is considered to be a "Listed Waste". Therefore, in accordance with State guidelines, the results of the auger cuttings sample analyses were compared to the "levels for disposal in a municipal solid waste landfill" listed in the "Contained-in" Policy for Soil Contaminated with Listed Hazardous Waste dated June

Consulting Engineers

Town of Cornelius Geoscience Project No. CH17.0175.GE December 15, 2017 Page 7

GEOSCIENCE GROUP

28, 2016 published by the North Carolina Department of Environmental Quality Division of Waste Management Hazardous Waste Section. The compounds detected in the soil samples are all well below their respective "Contained-in" levels. As such, the drummed cuttings are suitable for disposal in a Subtitle D lined municipal solid waste landfill as a non-hazardous waste. Geoscience is in the process of arranging for the removal and proper disposal of the drums.

Given the presence of the contaminants detected in the cuttings from the geotechnical borings, Geoscience recommends that any cuttings generated during the installation of the proposed walkway foundation system be handled in a manner consistent with the approved EMP for the Methods Cleaners Brownfields Site. Specifically, cuttings should be either drummed or placed in appropriately lined roll-off boxes pending the results of characterization sampling. Disposal of the resulting soils will be dependent upon the results of the characterization sample results. However, based on the sample results from the recently completed geotechnical borings, we anticipate that the cuttings will be classified as non-hazardous.

<u>CLOSURE</u>

Geoscience appreciates having had the opportunity to assist you during this phase of the project. If you have any questions concerning this report, please contact us.

Respectfully, GEOSCIENCE GROUP, INC.

Thomas C. Hassett, P.E. Senior Engineer

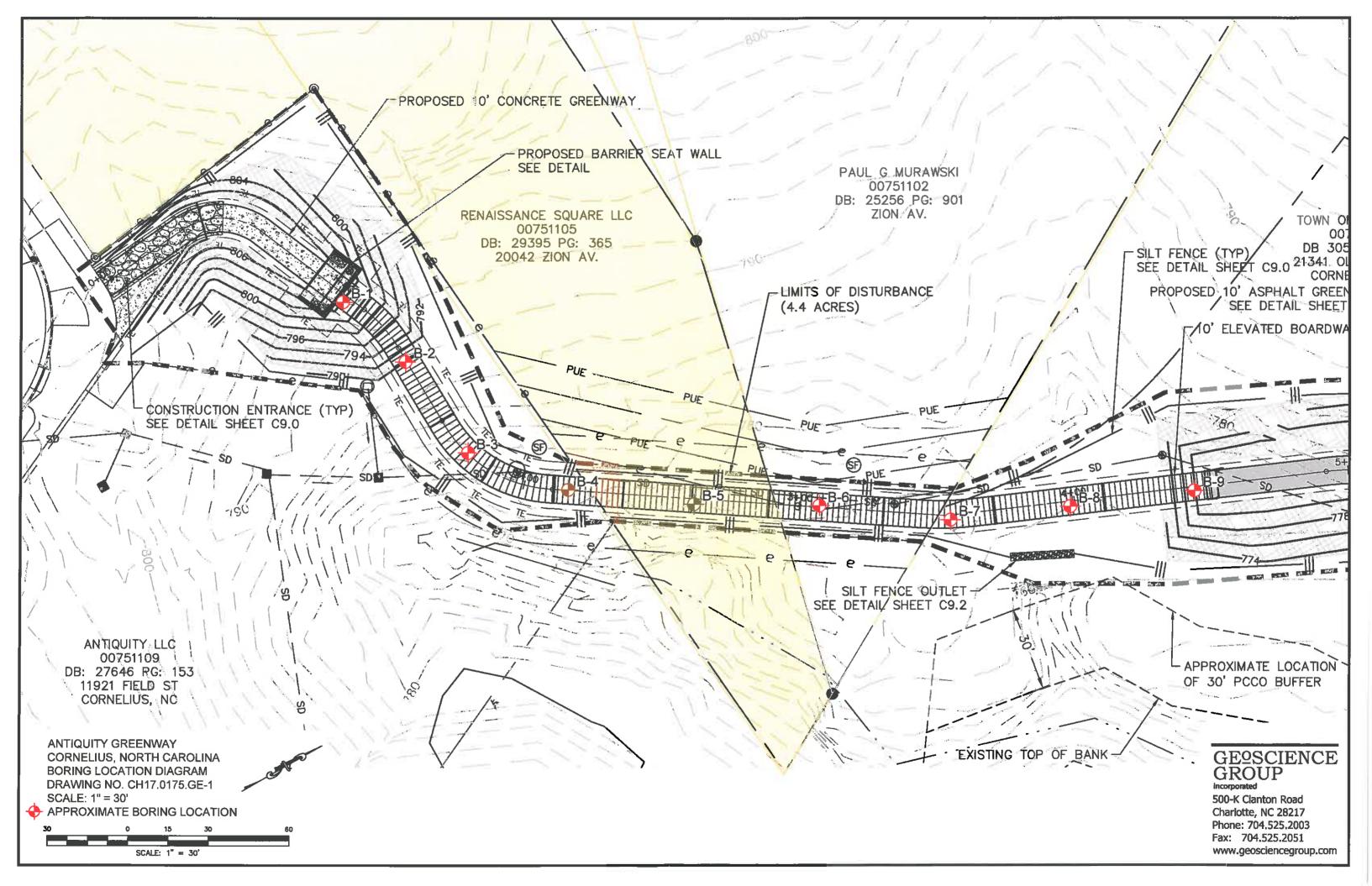
24977

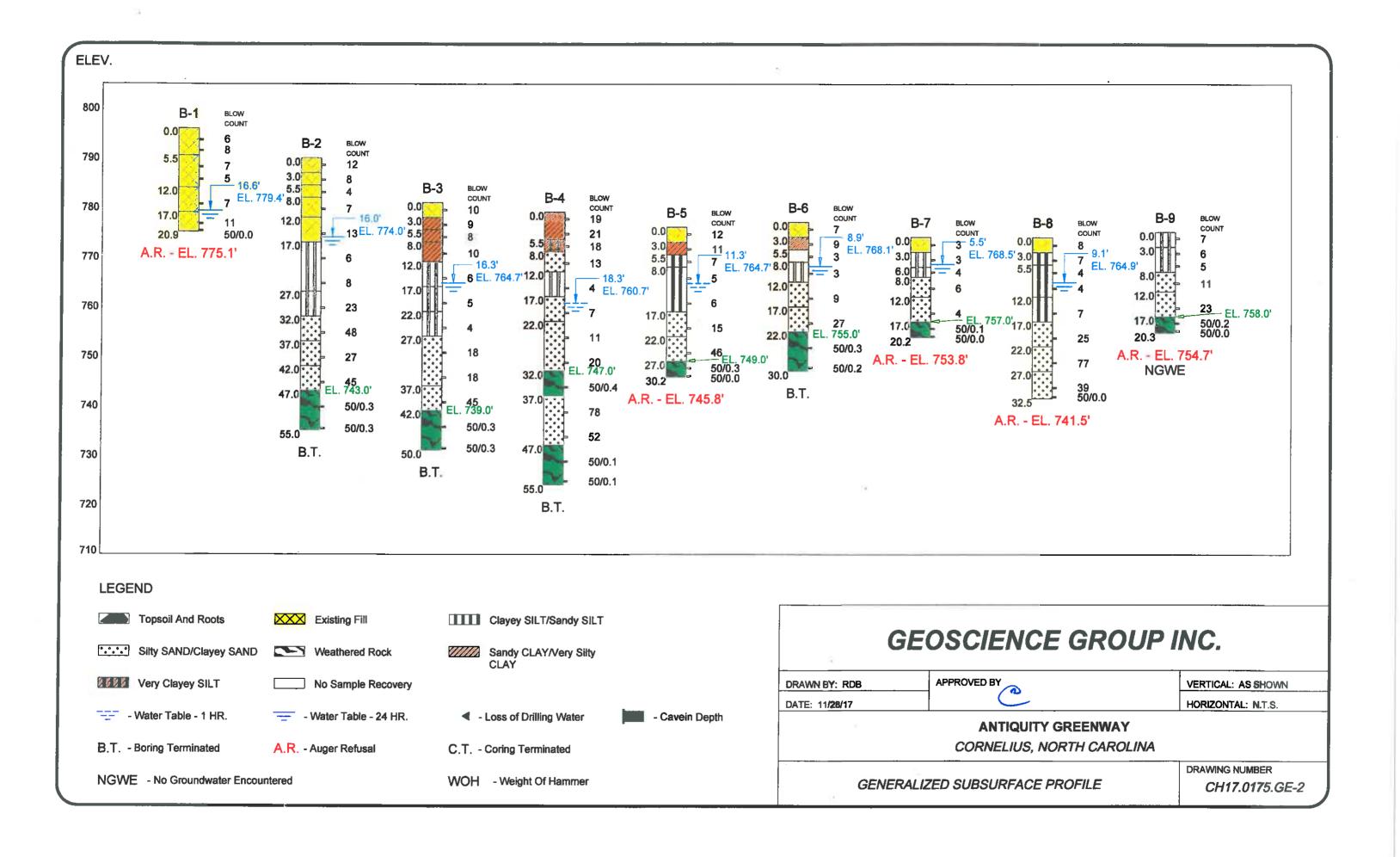
Daniel A. Miesocy P.E. Senior Vice President GINEE North Carolina Licenseine 24977

Enclosures P:\Workfiles\Geotech\2017\0175 Antiquity Greenway

APPENDIX

Boring Location Diagram


Generalized Subsurface Profile


Geotechnical Investigative Procedures

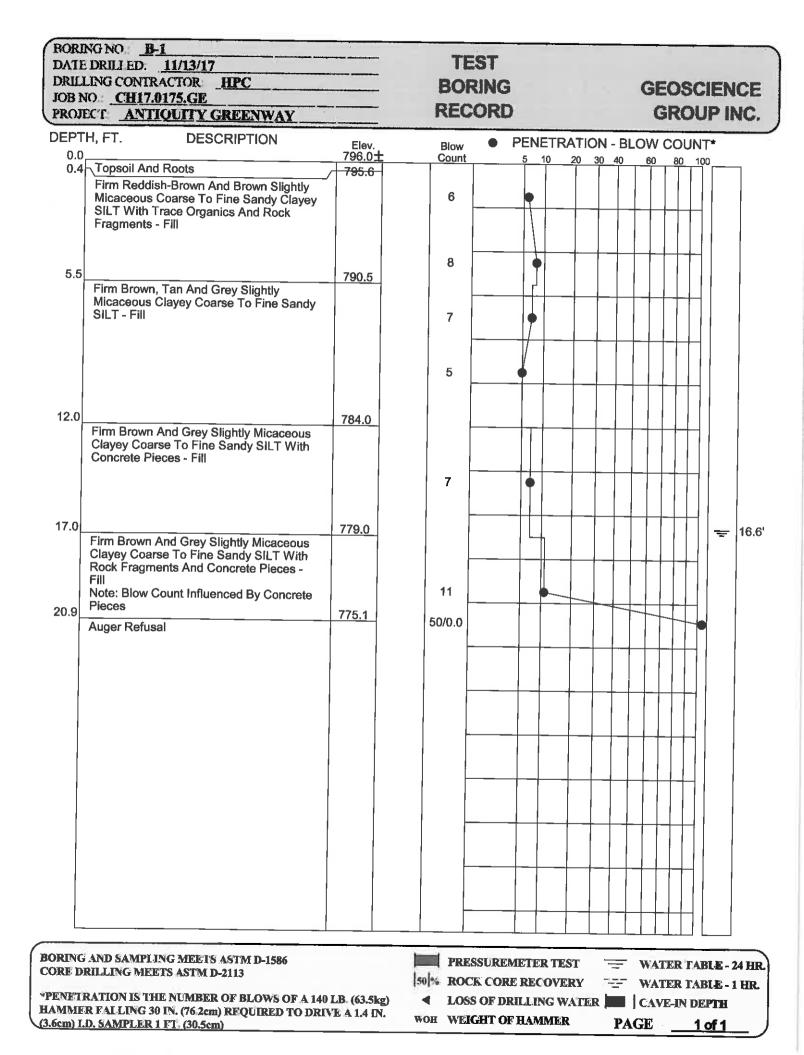
Test Boring Records

Table CH17.0175.GE-1: Summary Of Soil Sampling Results

Environmental Sampling Results

GEOSCIENCE GROUP, INC GEOTECHNICAL INVESTIGATIVE PROCEDURES Antiquity Greenway

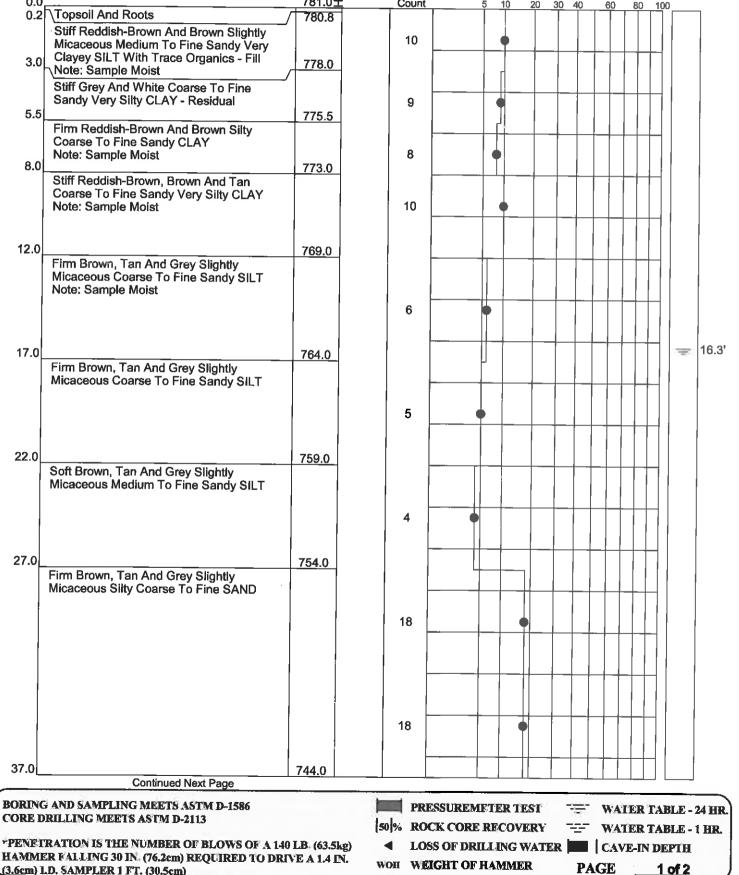
Geoscience Project No. CH17.0175.GE


Page 1 Of 1

<u>FIELD</u>

<u>Soil Test Borings</u>: Nine (9) soil test borings (B-1 through B-9) were drilled at the approximate locations shown on the attached *Boring Location Diagram*, Drawing No. CH17.0175.GE-1. Soil sampling and penetration testing were performed in accordance with ASTM D 1586-84.

The borings were advanced with hollow-stem, continuous-flight augers and, at standard intervals, soil samples were obtained with a standard 1.4-inch (3.6cm) I.D., 2-inch (5.1cm) O.D., split-tube sampler. The sampler was first seated 6 inches (15.2cm) to penetrate any loose cuttings, then driven an additional 12 inches (30.5cm) with blows of a 140-pound (63.5kg) hammer falling 30 inches (76.2cm). The number of hammer blows required to drive the sampler the final 12 inches (30.5cm) was recorded and is designated the "Standard Penetration Resistance" (N-Value). The Standard Penetration Resistance, when properly evaluated, is an index to soil strength, density and ability to support foundations.

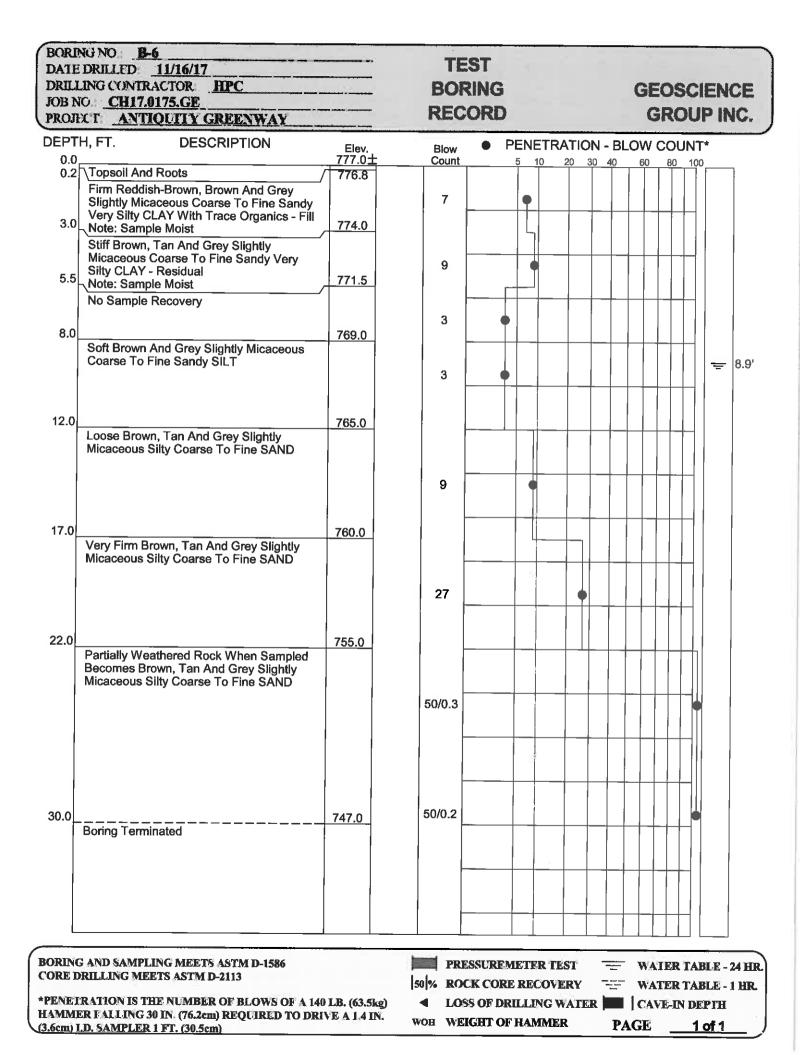

Representative portions of each soil sample were placed in glass jars and taken to our laboratory. The samples were then examined by an engineer to verify the driller's field classifications. Test Boring Records are attached indicating the soil descriptions and Standard Penetration Resistances.


BORING NO B-2 TEST DATE DRILLED 11/13/17 DRILI ING CONTRACTOR HPC BORING GEOSCIENCE JOB NO CH17.0175.GE RECORD **GROUP INC.** PROJECT. ANTIOUTTY GREENWAY DEPTH, FT. DESCRIPTION **PENETRATION - BLOW COUNT*** • Elev. Blow $790.0 \pm$ 0.0 Count 20 30 40 10 80 100 Stiff Brown And Grey Slightly Micaceous Medium To Fine Sandy Very Clayey SILT With Trace Organics - Fill 12 3.0 787.0 Firm Brown And Grey Slightly Micaceous Coarse To Fine Sandy Clayey SILT - Fill 8 5.5 784.5 Soft Brown And Grey Slightly Micaceous Coarse To Fine Sandy Clayey SILT - Fill Note: Sample Moist 4 8.0 782.0 Firm Brown And Grey Slightly Micaceous Medium To Fine Sandy Very Clavey SILT -Fill 7 Note: Sample Moist 12.0 778.0 Stiff Brown, Tan And Grey Slightly Micaceous Coarse To Fine Sandy Very Clayey SILT With Rock Fragments - Fill 13 16.0' ----17.0 773.0 Firm Brown And Tan Slightly Micaceous Clayey Coarse To Fine Sandy SILT -Residual 6 8 27.0 763.0 Very Stiff Brown And Tan Slightly Micaceous Clayey Coarse To Fine Sandy SILT 23 32.0 758.0 Dense Brown And Grey Slightly Micaceous Silty Coarse To Fine SAND 48 37.0 753.0 Continued Next Page BORING AND SAMPLING MEETS ASTM D-1586 PRESSUREMETER TEST -----WATER TABLE - 24 HR. CORE DRILLING MEETS ASTM D-2113 50 % ROCK CORE RECOVERY ---- WATER TABLE - 1 HR. PENFIRATION IS THE NUMBER OF BLOWS OF A 140 LB. (63 5kg) LOSS OF DRILLING WATER CAVE-IN DEPTH ◀ HAMMER FALLING 30 IN. (76.2cm) REQUIRED TO DRIVE A 1.4 IN WOH WEIGHT OF HAMMER PAGE 1 of 2 (3.6cm) I.D. SAMPLER 1 FT. (30.5cm)

BORING NO B-2 DATE DRILLED <u>11/13/17</u> DRILLING CONTRACTOR. <u>HPC</u> JOB NO <u>CH17.0175.GE</u> PROJECT. <u>ANTIQUITY GREENWAY</u>	الله بر المعالية المعالية المعالية (المعالية المعالية (المعالية المعالية المعالية (المعالية (المعالية المعالية (المعالية (المعالية (المعالية في المعالية (المعالية (للمعالية (المعالية (المعالي المعالية (المعالية (المعاليية (المعالية (المعالية (لمعالية (المعالية (TEST BORING RECORD		GEOSCIENCE GROUP INC.
DEPTH, FT. DESCRIPTION 37.0 (continued)	Elev. 753.0 ±	Blow • F	PENETRATION - 5 10 20 30 4	
Very Firm Brown And Grey Slightly Micaceous Silty Coarse To Fine SAND		27		
42.0	748.0			
Dense Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND				
		45		
47.0 Partially Weathered Rock When Sampled Becomes Brown, Tan And Grey Slightly	743.0			
Micaceous Silty Coarse To Fine SAND		50/0.3		
55.0 Boring Terminated	735.0	50/0.3		
BORING AND SAMPLING MEETS ASTM D-1586 CORE DRILLING MEETS ASTM D-2113 *PENETRATION IS THE NUMBER OF BLOWS OF A 140 HAMMER FALLING 30 IN. (76.2cm) REQUIRED TO DRI (3.6cm) I.D. SAMPLER 1 FT. (30.5cm)	LB (63.5kg) VE A 1.4 IN	50 % ROCK COR	E RECOVERY	WATER TABLE - 24 HR. WATER TABLE - 1 HR CAVE-IN DEPTH PAGE <u>2 of 2</u>

BORING NO B-3 TEST DATE DRILLED 11/16/17 DRILLING CONTRACTOR. HPC BORING GEOSCIENCE JOB NO. CH17.0175.GE RECORD **GROUP INC.** PROJECT ANTIOUTTY GREENWAY DEPTH. FT. DESCRIPTION **PENETRATION - BLOW COUNT*** • Elev. 781.0± Blow 0.0 Count 30 40 10 20 60 80 0.2 Topsoil And Roots 780.8

DATE DRILL JOB N	NG NO B-3 E DRILLED <u>11/16/17</u> LING CONTRACTOR <u>HPC</u> NO <u>CH17.0175, GE</u> PCT <u>ANTIQUITY GREENWAY</u>		TES BORI RECO	NG	· · · ·	EOSCIENCE GROUP INC.
	H, FT. DESCRIPTION (continued)	Elev.	Blow		TION - BLOW	
37.0	Dense Reddish-Brown And Brown Slightly Micaceous Silty Coarse To Fine SAND	744.0±	Count			
42.0		739.0	40			
	Partially Weathered Rock When Sampled Becomes Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND		50/0.3			
50.0	Boring Terminated	731.0	50/0.3			
CORE D	G AND SAMPLING MEETS ASTM D-1586 DRILLING MEETS ASTM D-2113 FRATION IS THE NUMBER OF BLOWS OF A 1	140 LB. (63.5kg)	50 % ROCK	SUREMFTER TES CORE RECOVER OF DRILLING WA	8Y == W	ATER TABLE - 24 HR. ATER TABLE - 1 HR. AVE-IN DEPTH
HAMMI	ER FALLING 30 IN. (76.2cm) REQUIRED TO D LD. SAMPLER 1 FT. (30.5cm)	RIVE A 1.4 IN		HT OF HAMMER		


BORING NO <u>B-4</u> DATE DRILLED <u>11/17/17</u> DRILLING CONTRACTOR <u>HPC</u> IOB NO <u>CH17.0175.GE</u> PROJECT <u>ANTIOUITY GREENWAY</u>		BO	est Ring Cord			GEOSCIENCE GROUP INC.
DEPTH, FT. DESCRIPTION 37.0 (continued)	Elev. 742.0 <u>±</u>	Blow Count			ON - BL 30 40	OW COUNT* 60 80 100
Very Dense Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND		78				
47.0	732.0	52	 			
Partially Weathered Rock When Sampled Becomes Brown And Grey Slightly Micaceous Silty Coarse To Fine SAND	_732.0	50/0.1				
55.0	724.0	50/0.1				
Boring Terminated	124.0					
BORING AND SAMPLING MEETS ASTM D-1586 CORE DRILLING MEETS ASTM D-2113 *PENETRATION IS THE NUMBER OF BLOWS OF A 140	I B (62 EL-	50 % RO	CK COR	METER TESI F RECOVERY		WATER TABLE - 24 HR. WATER TABLE - 1 HR.
HAMMER FALLING 30 IN. (76.2cm) REQUIRED TO DRIV (3.6cm) LD. SAMPLER 1 FT. (30.5cm)	ED. (03.5k) EA14 IN			ULLING WAT	•	CAVF-IN DEPIH GE <u>2 of</u> 2

BORING NO. B-5 DATE DRILLED 11/17/17 DRILLING CONTRACTOR HPC JOB NO CH17.0175.GE PROJECT ANTIOUITY GREENWAY

TEST BORING RECORD

GEOSCIENCE GROUP, INC.

PROJE	CT ANTIQUITY CREENWAY		RECO		GROUP,	INC.
DEPTH 0.0_	I, FT. DESCRIPTION	Elev. 776.0 ±	Blow Count		- BLOW COUNT*	<u></u>
0.0	Stiff Grey, Tan And White Coarse To Fine			<u> </u>	40 60 80 100	
	Sandy Very Silty CLAY - Fill		12			
3.0		772.0				
3.0	Stiff Brown, Tan And Grey Silty Coarse To	773.0				
	Fine Sandy CLAY - Residual		11			
5.5		770.5				
	Firm Brown And Tan Slightly Micaceous Clayey Coarse To Fine Very Sandy SILT					
			7			
8.0	Firm Brown, Tan And Grey Slightly	768.0				
	Micaceous Coarse To Fine Sandy SILT					
			5	P		
			Í			-
						∋= 11.3
			6	•		
						1
7.0		759.0				
	Firm Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND					
	Micaceous Only Coarse TO THE SAND					
			15			
2.0		754.0				
	Dense Brown, Tan And Grey Slightly	104.0			+++++++++++++++++++++++++++++++++++++++	8
	Micaceous Silty Coarse To Fine SAND					
			46			
					╺┼┼┼┼┼┼┽┤╽	
7.0	Partially Weathered Rock When Sampled	749.0				
	Becomes Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND					
	Micaceous Silly Coalse TO FINE SAIND		50/0.3			
0.2	A	745.8	50/0.0			
4	Auger Refusal	1				
ļ						
L						
DTAXO						
	AND SAMPLING MEETS ASTM D-1586 RILLING MEETS ASTM D-2113			UREMETER TEST	WATER TABL	
NET	RATION IS THE NUMBER OF BLOWS OF A 14	B. (63.5kg)		CORE RECOVERY OF DRILLING WATER	WATER TABLI	
MME	R FALLING 30 IN. (76.2cm) REQUIRED TO DR			IT OF HAMMER		
2m) I.	D. SAMPLER 1 FT. (30.5cm)				PAGE1 of	

BORING NO **B-7** DATE DRILLED <u>11/16/17</u> DRILLING CONTRACTOR <u>ILPC</u> JOB NO <u>CH17.0175.GE</u> PROJECT <u>ANTIQUITY GREENWAY</u>

GEOSCIENCE GROUP, INC.

DEPT			Blow	PENETRATION	BLOW COUNT*
0.0		<u>774.0±</u>		<u> </u>	
	Topsoil And Roots Soft Reddish-Brown And Bro Micaceous Medium To Fine Silty CLAY With Trace Organ Note: Sample Moist	Sandy Very	3	•	
6.0	Soft Brown, Tan And Grey S Micaceous Coarse To Fine S Residual Note: Sample Moist	ightly andy SILT - 768.0	3		5.5
ľ	Soft Brown, Tan And Grey S Micaceous Coarse To Fine S	ightly andy SILT	4		
8.0	Loose Brown, Tan And Grey Micaceous Silty Coarse To F	Slightly ine SAND	6		
12.0		762.0			
	Very Loose Brown, Tan And Micaceous Silty Coarse To F	Grey Slightly ine SAND			
			4	•	
17.0	Partially Weathered Rock Wh Becomes Brown And Grey Sl	en Sampled			
	Micaceous Silty Coarse To Fi	ne SAND	50/0.1		
20.2	Auger Refusal	753.8	50/0.0		
	AND SAMPLING MEETS ASTR RILLING MEETS ASTM D-2113		238-82	and a second	WATER TABLE - 24 H
AMME	RATION IS THE NUMBER OF E R FALLING 30 IN. (76.2cm) RE(D. SAMPLER 1 FT. (30.5cm)	LOWS OF A 140 LB (63.5kg) JUIRED TO DRIVE A 1.4 IN.	< 10	SS OF DRILLING WATER	WATER TABLE - 1 HR CAVE-IN DEPTH PAGE1 of 1

BORING NO B-8 TEST DATE DRILLFD 11/16/17 DRILLING CONTRACTOR. HPC BORING GEOSCIENCE JOB NO: CH17.0175.GE RECORD **GROUP INC.** PROJECT ANTIOUITY GREENWAY DEPTH, FT. DESCRIPTION • **PENETRATION - BLOW COUNT*** Elev. 774.0± Blow 0.0 Count 10 20 30 40 60 80 100 0.2 Topsoil And Roots 773.8 Firm Reddish-Brown And Brown Medium 8 To Fine Sandy Very Clayey SILT With Trace Organics - Fill 3.0 771.0 Firm Brown, Tan And Grey Slightly Micaceous Clayey Coarse To Fine Sandy SILT - Residual 7 Note: Sample Moist 5.5 768.5 Soft Brown, Tan And Grey Slightly Micaceous Coarse To Fine Sandy SILT 4 9.1 = 4 12.0 762.0 Firm Brown, Tan And Grey Slightly Micaceous Coarse To Fine Sandy SILT 7 17.0 757.0 Very Firm Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND 25 22.0 752.0 Very Dense Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND 77 27.0 747.0 Dense Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND 39 32.5 741.5 50/0.0 Auger Refusal BORING AND SAMPLING MEETS ASTM D-1586 PRESSUREMETER TEST WATER TABLE - 24 HR. **CORE DRILLING MEETS ASIM D-2113** 50 % **ROCK CORE RECOVERY** WATER TABLE - 1 HR. *PENETRATION IS THE NUMBER OF BLOWS OF A 140 LB (63.5kg) LOSS OF DRILLING WATER I CAVE-IN DEPTH HAMMER FALLING 30 IN. (76.2cm) REQUIRED TO DRIVE A 1.4 IN. WOH WEIGHT OF HAMMER PAGE <u>1 of 1</u> (3.6cm) LD. SAMPLER 1 FT (30.5cm)

BORING NO <u>B-9</u> DATE DRILLED <u>11/16/17</u> DRILLING CONTRACTOR <u>HPC</u> IOB NO: <u>CH17.9175.GE</u> PROJECT ANTIQUITY GREENWAY	NATARI V Mahambada, ang a mang ang a anang ang ang ang ang ang ang ang ang an	TEST BORING RECOR		GEOSCIENCE GROUP INC.
DEPTH, FT. DESCRIPTION	Elev.	Blow	PENETRATION -	BLOW COUNT*
0.0 0.2 \Topsoil And Roots	775.0±	Count	5 10 20 30 4	0 60 80 100
Firm Brown, Tan And Grey Slightly Micaceous Clayey Coarse To Fine Sandy SILT - Residual	772.0	7	•	
Firm Brown, Tan And Grey Slightly Micaceous Coarse To Fine Sandy SILT Note: Samples Moist	112.0	6		
8.0	767.0	5	•	
Firm Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND		11		
12.0	763.0			
Very Firm Brown, Tan And Grey Slightly Micaceous Silty Coarse To Fine SAND				
		23	•	
17.0 Partially Weathered Rock When Sampled	758.0			
Becomes Brown And Grey Slightly Micaceous Silty Coarse To Fine SAND		50/0.2		
20.3 Auger Refusal	754.7	50/0.0		
No Groundwater Encountered				
DRING AND SAMPLING MEETS ASTM D-1586	<u> </u>	PRESSUE	REMETER TEST	WATER TABLE - 24 HR
DRE DRILLING MEETS ASTM D-2113 ENETRATION IS THE NUMBER OF BLOWS OF A 1-		50 % ROCK CO	ORE RECOVERY	WATER TABLE - 1 HR.
AMMER FALLING 30 IN. (76.2cm) REQUIRED TO DE 6cm) L.D. SAMPLER 1 FT. (30.5cm)	IVE A 1.4 IN.	WOH WEIGHT		PAGE1 of 1

CH17.0175.GE-1: Summary of Soił Sampling Results

Revision Date:	12/13/2017		Project Name:	Ā	Antiquity Greenway	Vay				Project No.:	CH17.0	CH17.0175.GE
Analytic	Analytical Method	Qia	(dqd) Olq				VOCs by 8:	VOCs by 8260 (mg/kg)				TCLP VOCs
Contamina	Contaminant of Concern		sgnit	əuənjo	ə ı	əuəivur	ə		ə	ənstham	leto	spunodu
Sample ID	Date Collected	TCE Read	PCE Read	4-Isopropyl	rotecA	Tetrachloroe	uənloT	Methyl Butyl Methyl Butyl	n9lyX-o	Τιςηοιοτίμοιο	T ,sənəlyX	noJ jagısT IIA
B-1	11/20/2017	297	4	<0.00027	l 110.0	0.0025 J	<0.00032	<0.00051	<0.00023	<0.00037	<0.0011	NA
B-2	11/20/2017	304	573	<0.00014	0.044	<0.00014	<0.00017	<0.00027	<0.00012	<0.00019	<0.00055	NA
B-3	11/20/2017	554	288	<0.00015	0.038	<0.00014	<0.00018	<0.00028	<0.00013	0.0033	<0.00058	NA
8-4	11/20/2017	287	130	0.0043 J	0.026 J	<0.00022	0.0030 J	<0.00041	<0.00019	<0.00029	<0.00085	NA
B-4A	11/20/2017	283	152	0.0049 J	0.0055 J	<0.00027	<0.0057	<0.00052	<0.00024	<0.00037	0.0011	NA
B-5	11/20/2017	404	0	<0.00020	0.029 J	<0.00020	<0.00024	<0.00038	<0.00017	<0.00027	<0.00078	BRL
9-9 8	11/20/2017	102	262	<0.00022	0.051	<0.00022	<0.00026	<0.00041	<0.00019	<0.00030	<0.00086	NA
B-7	11/20/2017	4	0	<0.00031	<0.0016	0.0070	<0.00037	<0.00058	<0.00026	<0.00042	<0.0012	NA
B-8	11/20/2017	0	0	0.0085	0.033 J	0.14	<0.00033	0.0086 J	0.0024 J	<0.00037	0.0024 J	NA
"Containe Levels for MS	"Contained In" Policy - Levels for Disposal in a MSW LF	N/A	N/A	IN	1,400	14	100	560	300	30	300	N/A
	Notes:	J - Detected but be concentration	ut below Repor	J - Detected but below Reporting Limit; therefore, result is an estimated concentration	fore, result is a	in estimated		NL - Not Listed				

Level for Disposal in Municipal Solid Waste Land Fill (MSW LF) Values Obtained from NCDEQ Division of Waste Management - Hazardous Waste Section "Contained In" Policy for Soil Contaminated with Listed Hazardous Waste (July 28, 2016)

NL - Not Listed

NA - Not Analyzed

N/A - Not Appicable

Full-Service Analytical & Environmental Solutions NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012

Geoscience Group Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Project: Zion Ave. Site

Lab Submittal Date: 11/21/2017 Prism Work Order: 7110418

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Angela D. Overcash VP Laboratory Services

Reviewed By Angela D. Overcash VP Laboratory Services

Data Qualifiers Key Reference:

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- L Parameter reported with possible low bias. LCS recovery below the QC limit.
- L1 LCS recovery outside of the QC limits. LCSD recovery within the limits. No further action taken.
- LH High LCS recovery. Analyte not detected in the sample(s). No further action taken.
- BRL Below Reporting Limit
- MDL Method Detection Limit
- RPD Relative Percent Difference
- Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Sample Receipt Summary

12/07/2017 Prism Work Order: 7110418

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
B-1	7110418-01	Solid	11/20/17	11/21/17
B-2	7110418-02	Solid	11/20/17	11/21/17
B-3	7110418-03	Solid	11/20/17	11/21/17
B-4	7110418-04	Solid	11/20/17	11/21/17
B-5	7110418-05	Solid	11/20/17	11/21/17
B-6	7110418-06	Solid	11/20/17	11/21/17
B-7	7110418-07	Solid	11/20/17	11/21/17
B-8	7110418-08	Solid	11/20/17	11/21/17
B-4A	7110418-09	Solid	11/20/17	11/21/17

Samples were received in good condition at 4.0 degrees C unless otherwise noted.

Summary of Detections

12/07/2017 Prism Work Order: 7110418

Prism ID	Client ID	Parameter	Method	Result		Units
7110418-01	B-1	Acetone	8260B	0.011	J	mg/kg dry
7110418-01	B-1	Tetrachloroethylene	8260B	0.0025	J	mg/kg dry
7110418-02	B-2	Acetone	8260B	0.044		mg/kg dry
7110418-03	B-3	Acetone	8260B	0.038		mg/kg dry
7110418-03	B-3	Trichlorofluoromethane	8260B	0.0033		mg/kg dry
7110418-04	B-4	4-Isopropyitoluene	8260B	0.0043	J	mg/kg dry
7110418-04	B-4	Acetone	8260B	0.026	J	mg/kg dry
7110418-04	B-4	Toluene	8260B	0.0030	J	mg/kg dry
7110418-05	B-5	Acetone	8260B	0.029	J	mg/kg dry
7110418-06	B-6	Acetone	8260B	0.051		mg/kg dry
7110418-07	B-7	Tetrachloroethylene	8260B	0.0070		mg/kg dry
7110418-08	B-8	4-Isopropyitoluene	8260B	0.0085		mg/kg dry
7110418-08	B-8	Acetone	8260B	0.033	J	mg/kg dry
7110418-08	B-8	Methyl Butyl Ketone (2-Hexanone)	8260B	0.0086	đ	mg/kg dry
7110418-08	B-8	o-Xylene	8260B	0.0024	J	mg/kg dry
7110418-08	B-8	Tetrachloroethylene	8260B	0.14		mg/kg dry
7110418-08	B-8	Xylenes, total	8260B	0.0024	J	mg/kg dry
7110418-09	B-4A	4-isopropyitoluene	8260B	0.0049	J	mg/kg dry
7110418-09	B-4A	Acetone	8260B	0.055	J	mg/kg dry

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-1 Prism Sample ID: 7110418-01 Prism Work Order: 7110418 Time Collected: 11/20/17 12:25 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
General Chemistry Parameters								
X Solids	74.3	% by Weight	0.100	0.100	1	*SM2540 G	12/1/17 16:00 JLB	P7L003
Volatile Organic Compounds by	GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0056	0.00046	1	8260B	11/30/17 14:35 ANG	P7K055
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0056	0.00027	1 =	8260B	11/30/17 14:35 ANG	
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0056	0.00038	1	8260B	11/30/17 14:35 ANG	
,1,2-Trichloroethane	BRL	mg/kg dry	0.0056	0.00050	1	8260B	11/30/17 14:35 ANG	P7K055
,1-Dichloroethane	BRL	mg/kg dry	0.0056	0.00016	1	8260B	11/30/17 14:35 ANG	P7K055
,1-Dichloroethylene	BRL	mg/kg dry	0.0056	0.00025	1	8260B	11/30/17 14:35 ANG	P7K0551
,1-Dichloropropylene	BRL	mg/kg dry	0.0056	0.00031	1	8260B	11/30/17 14:35 ANG	P7K0551
,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0056	0.00032	1	8260B	11/30/17 14:35 ANG	P7K0551
,2,3-Trichloropropane	BRL	mg/kg dry	0.0056	0.00072	1	8260B	11/30/17 14:35 ANG	P7K0551
,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0056	0.00042	1	8260B	11/30/17 14:35 ANG	P7K0551
,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0056	0.00043	1	8260B	11/30/17 14:35 ANG	P7K0551
,2-Dibromoethane	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/30/17 14:35 ANG	P7K0551
,2-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00026	1	8260B	11/30/17 14:35 ANG	P7K0551
2-Dichforoethane	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/30/17 14:35 ANG	P7K0551
2-Dichloropropane	BRL	mg/kg dry	0.0056	0.00035	1	8260B	11/30/17 14:35 ANG	P7K0551
3,5-Trimethylbenzene	BRL	mg/kg dry	0.0056	0.00043	1	8260B	11/30/17 14:35 ANG	P7K0551
3-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00037	1	8260B	11/30/17 14:35 ANG	P7K0551
3-Dichloropropane	BRL	mg/kg dry	0.0056	0.00028	1	8260B	11/30/17 14:35 ANG	P7K0551
4-Dichlorobenzene	BRL	mg/kg dry	0.0056	0.00022	1	8260B	11/30/17 14:35 ANG	P7K0551
2-Dichloropropane	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/30/17 14:35 ANG	P7K0551
Chlorotoluene	BRL	mg/kg dry	0.0056	0.00029	1	8260B	11/30/17 14:35 ANG	P7K0551
Chlorotoluene	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/30/17 14:35 ANG	P7K0551
Isopropyltoluene	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/30/17 14:35 ANG	P7K0551
catone	0.011 J	mg/kg dry	0.056	0.0014	1	8260B		P7K0551
enzene	BRL	mg/kg dry	0.0034	0.00033	1	8260B		
omobenzene	BRL	mg/kg dry	0.0056	0.00047	1	8260B	11/30/17 14:35 ANG 11/30/17 14:35 ANG	P7K0551 P7K0551
omochloromethane	BRL	mg/kg dry	0.0056	0.00031	1	8260B	11/30/17 14:35 ANG	P7K0551
omodichloromethane	BRL	mg/kg dry	0.0056	0.00031	1	8260B	11/30/17 14:35 ANG	
omoform	BRL	mg/kg dry	0.0056	0.00064	1	8260B		P7K0551 P7K0551
omomethane	BRL	mg/kg dry	0.011	0.00070	1	8260B	11/30/17 14:35 ANG 11/30/17 14:35 ANG	
rbon Tetrachloride	BRL	mg/kg dry	0.0056	0.00028	1	8260B	11/30/17 14:35 ANG	P7K0551
lorobenzene	BRL	mg/kg dry	0.0056	0.00030	1	8260B		P7K0551
loroethane	BRL	mg/kg dry	0.011	0.00047	1	8260B	11/30/17 14:35 ANG	P7K0551
loroform	BRL	mg/kg dry	0.0056	0.00041	1	8260B	11/30/17 14:35 ANG	P7K0551
loromethane	BRL	mg/kg dry	0.0056	0.00038	1	8260B	11/30/17 14:35 ANG	P7K0551
-1,2-Dichloroethylens	BRL	mg/kg dry	0.0056	0.00038			11/30/17 14:35 ANG	P7K0551
-1,3-Dichloropropylene	BRL	mg/kg dry	0.0056		1	8260B	11/30/17 14:35 ANG	P7K0551
romochloromethane	BRL	mg/kg dry		0.00019	1	8260B	11/30/17 14:35 ANG	P7K0551
hlorodifluoromethane	BRL	mg/kg dry	0.0056 0.0056	0.00023	1 1	8260B 8260B	11/30/17 14:35 ANG 11/30/17 14:35 ANG	P7K0551 P7K0551

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217 Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-1 Prism Sample ID: 7110418-01 Prism Work Order: 7110418 Time Collected: 11/20/17 12:25 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00022	1	8260B	11/30/17 14:35 ANG	P7K0551
Isopropyl Ether	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/30/17 14:35 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0056	0.00033	10	8260B	11/30/17 14:35 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00052	1	8260B	11/30/17 14:35 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.056	0.00051	30	8260B	11/30/17 14:35 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00051	1	8260B	11/30/17 14:35 ANG	P7K0551
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.056	0.00048	1	8260B	11/30/17 14:35 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.011	0.00032	1	8260B	11/30/17 14:35 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 14:35 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 14:35 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0056	0.00029	1	8260B	11/30/17 14:35 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0056	0.00033	1	8260B	11/30/17 14:35 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0056	0.00023	1	8260B	11/30/17 14:35 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/30/17 14:35 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/30/17 14:35 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0056	0.00019	1	8260B	11/30/17 14:35 ANG	P7K0551
Tetrachloroethylene	0.0025 J	mg/kg dry	0.0056	0.00027	1	8260B	11/30/17 14:35 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0056	0.00032	1	8260B	11/30/17 14:35 ANG	P7K0551
rans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0056	0.00034	1	8260B	11/30/17 14:35 ANG	P7K0551
rans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0056	0.00030	1	8260B	11/30/17 14:35 ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0056	0.00037	1	8260B	11/30/17 14:35 ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0056	0.00036	1	8260B	11/30/17 14:35 ANG	P7K0551
/inyl acetate	BRL	mg/kg dry	0.028	0.00077	1	8260B	11/30/17 14:35 ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.0056	0.00027	1	8260B	11/30/17 14:35 ANG	P7K0551
Kylenes, total	BRL	mg/kg dry	0.017	0.0011	1	8260B	11/30/17 14:35 ANG	P7K0551
			Surrogate			Recov	very Control	lmits
			4-Bromofluz	mbenzene		0	70.120	

Obirogate	TRECOVERY	Control Limits
4-Bromofluorobenzene	98 %	70-130
Dibromofluoromethane	98 %	84-123
Toluene-d8	88 %	76-129

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-2 Prism Sample ID: 7110418-02 Prism Work Order: 7110418 Time Collected: 11/20/17 13:20 Time Submitted: 11/21/17 09:15

General Chemistry Parameters½ Solids76Volatile Organic Compounds by GC/MS1,1,1,2-Tetrachloroethane811,1,1,2-Tetrachloroethane811,1,2,2-Tetrachloroethane811,1,2,2-Tetrachloroethane811,1,2-Trichloroethane811,1,2-Trichloroethane811,1-Dichloroethane811,1-Dichloroethane811,1-Dichloroethane811,2-Trichloroethane811,2-Trichloroethane811,2-Trichloropropylene811,2,3-Trichlorobenzene811,2,4-Trichlorobenzene811,2,4-Trichlorobenzene811,2-Dichlorobenzene811,2-Dichlorobenzene811,2-Dichloropropane811,3-Dichloropropane811,3-Dichloropropane811,3-Dichloropropane811,3-Dichloropropane812,2-Dichloropropane812,2-Dichloropropane812,2-Dichloropropane814-Chlorotoluene814-Chlorotoluene81888898981,4-Dichloropropane811,4-Dichloropropane811,4-Dichloropropane811,4-Dichloropropane811,4-Dichloropropane811,4-Dichloropropane814-Isopropyltoluene8188991,4-Dichloromethane81	Weight Weight RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dry L mg/kg dry	 0.0029 	0.100 0.00024 0.00014 0.00020 0.00026 0.00013 0.00016 0.00017 0.00037 0.00022 0.00012 0.00012 0.00014 0.00017 0.00014 0.00017 0.00018 0.00022 0.00019	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*\$M2540 G 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	12/1/17 16:00 11/30/17 15:0 11/30/17 15:0 11/30/	3 ANG 3 ANG	P7L0038 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane Bit 1,1,1-Trichloroethane Bit 1,1,2,2-Tetrachloroethane Bit 1,1,2,2-Tetrachloroethane Bit 1,1,2-Trichloroethane Bit 1,1,2-Trichloroethane Bit 1,1,2-Trichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethylene Bit 1,1-Dichloroptylene Bit 1,2,3-Trichlorobenzene Bit 1,2,3-Trichlorobenzene Bit 1,2,4-Trimethylbenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,4-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,4-Dichloropropane Bit 2,2-Dichloropropane Bit 2,2-Dichloro	Weight Weight RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dr RL mg/kg dry L mg/kg dry	 0.0029 	0.00024 0.00014 0.00020 0.00082 0.00013 0.00016 0.00017 0.00022 0.00022 0.00022 0.00012 0.00014 0.00018 0.00018 0.00022	1 1 1 1 1 1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0 11/30/17 15:0	3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1,1,2-Tetrachloroethane Bit 1,1,1-Trichloroethane Bit 1,1,2-Tetrachloroethane Bit 1,1,2-Trichloroethane Bit 1,1,2-Trichloroethane Bit 1,1,2-Trichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethylene Bit 1,1-Dichloropropylene Bit 1,2,3-Trichlorobenzene Bit 1,2,3-Trichlorobenzene Bit 1,2,4-Trimethylbenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichloropropane Bit 1,2-Dichlorobenzene Bit 1,2-Dichloropenzene Bit 1,2-Dichloropropane Bit 1,3-Dichloropenzene Bit 1,3-Dichloropenzene Bit 1,3-Dichloropenzene Bit 1,3-Dichloropenzene Bit 1,3-Dichloropenzene Bit 2,2-Dichloropenzene Bit 3-Dichloropenzene Bit 3-Dichloropenzene Bit 3-Dichloropenzene Bit 3-Dichloropenzene	L mg/kg dry L mg/kg dry	 0.0029 	0.00014 0.00020 0.00082 0.00013 0.00013 0.00017 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00018 0.00018	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0 11/30/17 15:0	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1,1-TrichloroethaneBit1,1,2-TrichloroethaneBit1,1,2-TrichloroethaneBit1,1-DichloroethaneBit1,1-DichloroethaneBit1,1-DichloroethaneBit1,1-DichloroethaneBit1,1-DichloropropyleneBit1,2,3-TrichlorobenzeneBit1,2,3-TrichlorobenzeneBit1,2,4-TrimethylbenzeneBit1,2-DichlorobenzeneBit1,2-DichlorobenzeneBit1,2-DichlorobenzeneBit1,2-DichlorobenzeneBit1,2-DichlorobenzeneBit1,2-DichloropropaneBit1,3-DichloropropaneBit1,3-DichloropropaneBit1,3-DichloropropaneBit1,3-DichloropropaneBit1,3-DichloropropaneBit2,2-DichloropropaneBit1,3-DichloropropaneBit1,3-DichloropropaneBit2,2-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit3-DichloropropaneBit <td>L mg/kg dry L mg/kg dry</td> <td> 0.0029 </td> <td>0.00014 0.00020 0.00082 0.00013 0.00013 0.00017 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00018 0.00018</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B</td> <td>11/30/17 15:0 11/30/17 15:0</td> <td> ANG ANG</td> <td>P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551</td>	L mg/kg dry L mg/kg dry	 0.0029 	0.00014 0.00020 0.00082 0.00013 0.00013 0.00017 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00018 0.00018	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0 11/30/17 15:0	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1,2,2-TetrachloroethaneBit1,1,2-TrichloroethaneBit1,1-DichloroethaneBit1,1-DichloroethaneBit1,1-DichloroethyleneBit1,1-DichloropropyleneBit1,2,3-TrichlorobenzeneBit1,2,3-TrichlorobenzeneBit1,2,3-TrichlorobenzeneBit1,2,4-TrimethylbenzeneBit1,2-DibromoethaneBit1,2-DichloropropaneBit1,2-DichloropenzeneBit1,2-DichloropenzeneBit1,2-DichloropenzeneBit1,2-DichloropenzeneBit1,3-5-TrimethylbenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit1,4-DichloropenzeneBit2,2-DichloropenzeneBit2,2-DichloropenzeneBit2,2-DichloropenzeneBit3,5-TrimethylbenzeneBit3,5-TrimethylbenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit2,2-DichloropenzeneBit2,2-DichloropenzeneBit3,3-DichloropenzeneBit3,3-DichloropenzeneBit1,3-DichloropenzeneBit1,3-DichloropenzeneBit2,2-DichloropenzeneBit3,3-DichloropenzeneBit3,3-DichloropenzeneBit3,3-DichloropenzeneBit3,3-DichloropenzeneBit<	KL mg/kg dry KL mg/kg dry	 0.0029 	0.00020 0.00026 0.00013 0.00018 0.00017 0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00018 0.00022	1 1 1 1 1 1 1 1 1 1 1 1	82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608	11/30/17 15:0 11/30/17 15:0	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1,2-Trichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloroethane Bit 1,1-Dichloropropylene Bit 1,2,3-Trichlorobenzene Bit 1,2,3-Trichlorobenzene Bit 1,2,3-Trichlorobenzene Bit 1,2,4-Trimethylbenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichlorobenzene Bit 1,2-Dichloropropane Bit 1,2-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 1,3-Dichloropropane Bit 2,2-Dichloropropane Bit 2,2-Dichloropropane Bit 2,2-Dichloropropane Bit 3,3-Dichloropropane Bit 2,2-Dichloropropane Bit 2,2-Dichlorotoluene Bit 4-Chlorotoluene Bit 4-Sopropytoluene Bit </td <td>L mg/kg dry L mg/kg dry</td> <td> 0.0029 </td> <td>0.00026 0.000182 0.00013 0.00016 0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608</td> <td>11/30/17 15:0 11/30/17 15:0</td> <td> ANG ANG</td> <td>P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551</td>	L mg/kg dry L mg/kg dry	 0.0029 	0.00026 0.000182 0.00013 0.00016 0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 1 1 1 1 1 1 1 1 1	82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608 82608	11/30/17 15:0 11/30/17 15:0	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1-Dichloroethane Bi 1,1-Dichloroethylene Bi 1,1-Dichloroethylene Bi 1,1-Dichloropropylene Bi 1,2,3-Trichlorobenzene Bi 1,2,3-Trichlorobenzene Bi 1,2,3-Trichlorobenzene Bi 1,2,3-Trichlorobenzene Bi 1,2,4-Trimethylbenzene Bi 1,2-Dichlorobenzene Bi 1,2-Dichlorobenzene Bi 1,2-Dichlorobenzene Bi 1,2-Dichlorobenzene Bi 1,2-Dichloropopane Bi 1,2-Dichloropopane Bi 1,3-Dichloropopane Bi 1,3-Dichloropopane Bi 1,3-Dichloropopane Bi 1,3-Dichloropopane Bi 2,2-Dichloropopane Bi 3-Boropyltoluene Bi Acetone 0.044 Biromo	L mg/kg dry L mg/kg dry	 0.0029 	0.000082 0.00013 0.00016 0.00017 0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0 11/30/17 15:0	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1-Dichloroethylene Br 1,1-Dichloropropylene Br 1,2,3-Trichloropropylene Br 1,2,3-Trichloropropane Br 1,2,3-Trichloropropane Br 1,2,4-Trimethylbenzene Br 1,2-Dibhorobenzene Br 1,2-Dibhorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichloropropane Br 1,2-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichlorobenzene Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 2,2-Dichloropropane Br 1,3-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 3,5-Trimethylbenzene Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene Br	L mg/kg dry L mg/kg dry	 0.0029 	0.00013 0.00016 0.00017 0.00037 0.00022 0.00022 0.00012 0.00014 0.00018 0.00018 0.00022	1 1 1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	 ANG 	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,1-DichloropropyleneBr1,2,3-TrichlorobenzeneBr1,2,3-TrichlorobenzeneBr1,2,3-TrichlorobenzeneBr1,2,4-TrimethylbenzeneBr1,2-A-TrimethylbenzeneBr1,2-DibromoethaneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichloropropaneBr1,3-DichlorobenzeneBr1,3-DichlorobenzeneBr1,3-DichlorobenzeneBr2,2-DichloropropaneBr2,2-DichloropropaneBr2,2-DichloropropaneBr4,4-DichlorobenzeneBr4-SopropyftolueneBr4-SopropyftolueneBr3romobenzeneBr3romodichloromethaneBr3romodichloromethaneBr3romodichloromethaneBr	L mg/kg dry L mg/kg dry	 0.0029 	0.00016 0.00017 0.00037 0.00022 0.00022 0.00012 0.00014 0.00018 0.00018	1 1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,2,3-TrichlorobenzeneBr1,2,3-TrichloropropaneBr1,2,3-TrichloropropaneBr1,2,4-TrimethylbenzeneBr1,2-DibromoethaneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,2-DichlorobenzeneBr1,3-DichlorobenzeneBr1,3-DichlorobenzeneBr1,3-DichlorobenzeneBr1,3-DichlorobenzeneBr2,2-DichloropropaneBr2,2-DichloropropaneBr4-ChloroblenzeneBr4-ChloroblenzeneBr3-BromobenzeneBr3-BromobenzeneBr3-Dichloropropan	L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	0.00017 0.00037 0.00022 0.00012 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0:	3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,2,3-Trichloropropane Br 1,2,4-Trichlorobenzene Br 1,2,4-Trimethylbenzene Br 1,2-Dibromoethane Br 1,2-Dichlorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichloropropane Br 1,2-Dichloropropane Br 1,3-Dichlorobenzene Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,4-Dichloropropane Br 2,2-Dichloropropane Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene Br 3,5-Dichloropropane Br 3,5-Dichloropropane Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene <td< td=""><td>L mg/kg dry L mg/kg dry</td><td>0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029</td><td>0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022</td><td>1 1 1 1 1 1</td><td>8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B</td><td>11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03</td><td>3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG</td><td>P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551</td></td<>	L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	0.00037 0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,2,4-Trichlorobenzene Br 1,2,4-Trimethylbenzene Br 1,2-Dibromoethane Br 1,2-Dichlorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichlorobenzene Br 1,2-Dichloropropane Br 1,3-Dichlorobenzene Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 1,3-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 3,5-Trimethylbenzene Br 3,5-Trimethylbenzene Br 1,3-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 2,2-Dichloropropane Br 3,5-Trimethylbenzene <	L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	0.00022 0.00022 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0:	3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,2,4-Trimethylbenzene BF 1,2-Dibromoethane BF 1,2-Dichlorobenzene BF 1,2-Dichlorobenzene BF 1,2-Dichloropropane BF 1,2-Dichloropropane BF 1,3-Dichloropropane BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 1,3-Dichloropropane BF 1,3-Dichloropropane BF 2,2-Dichloropropane BF 4-Sopropyfoluene BF Acetone 0.044 Banzene BF Bromobenzene BF Bromochloromethane BF Bromodichloromethane BF	L mg/kg dry L mg/kg dry L mg/kg dry L mg/kg dry L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	0.00022 0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 1 2:4::	8260B 8260B 8260B 8260B 8260B	11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0: 11/30/17 15:0:	ANG ANG ANG ANG ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
1,2-Dibromoethane BF 1,2-Dichlorobenzene BF 1,2-Dichlorobenzene BF 1,2-Dichloropropane BF 1,2-Dichloropropane BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 1,3-Dichlorobenzene BF 2,2-Dichloropropane BF 4-Isopropyftoluene BF Acetone 0.044 Benzene BF Bromobenzene BF Bromochloromethane BF Bromochloromethane BF	L. mg/kg dry L. mg/kg dry L. mg/kg dry L. mg/kg dry L. mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	0.00012 0.00014 0.00017 0.00018 0.00022	1 1 1 2:4:0	8260B 8260B 8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	3 ANG 3 ANG 3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551 P7K0551
1,2-Dichlorobenzene BR 1,2-Dichlorobenzene BR 1,2-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 4-Chlorotoluene BR 4-Isopropytoluene BR Benzene BR Bromobenzene BR Bromochloromethane BR Bromodichloromethane BR	L mg/kg dry L mg/kg dry L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029	0.00014 0.00017 0.00018 0.00022	1 1 23400	8260B 8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	3 ANG 3 ANG 3 ANG	P7K0551 P7K0551 P7K0551
1,2-Dichloroethane BR 1,2-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,4-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 4-Chlorotoluene BR 4-Isopropyltoluene BR Acetone 0.044 Banzene BR Bromobenzene BR Bromochloromethane BR	L mg/kg dry L mg/kg dry L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029 0.0029 0.0029	0.00017 0.00018 0.00022	1 31	8260B 8260B 8260B	11/30/17 15:03 11/30/17 15:03 11/30/17 15:03	3 ANG 3 ANG	P7K0551 P7K0551
1,2-Dichloropropane BR 1,3,5-Trimethylbenzene BR 1,3,5-Trimethylbenzene BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,4-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichlorotoluene BR 4-Chlorotoluene BR 4-Sopropyltoluene BR 3enzene BR Bromochloromethane BR Bromodichloromethane BR	L mg/kg dry L mg/kg dry	0.0029 0.0029 0.0029	0.00018 0.00022	240	8260B 8260B	11/30/17 15:03 11/30/17 15:03	ANG	P7K0551
1,3,5-Trimethylbenzene BR 1,3-Dichlorobenzene BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,4-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 4-Sopropyftoluene BR 4-Isopropyftoluene BR 8enzene BR Bromobenzene BR Bromochloromethane BR	L mg/kg dry	0.0029	0.00022		8260B	11/30/17 15:03		
1,3-Dichlorobenzene BR 1,3-Dichloropropane BR 1,3-Dichloropropane BR 1,4-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 4-Chlorotoluene BR 4-Sopropyltoluene BR Acetone 0.044 Banzene BR Bromobenzene BR Bromochloromethane BR	mg/kg dry	0.0029		1			/ 1410	
1,3-Dichloropropane BR 1,4-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2-Chlorotoluene BR 4-Chlorotoluene BR 4-Isopropy/toluene BR Acetone 0.044 Benzene BR Bromochloromethane BR			0.00019	-		11/30/17 15:03		P7K0551
1,4-Dichlorobenzene BR 2,2-Dichloropropane BR 2,2-Dichloropropane BR 2-Chlorotoluene BR 4-Chlorotoluene BR 4-Isopropyltoluene BR Acetone 0.044 Benzene BR Bromobenzene BR Bromochloromethane BR				1	8260B	11/30/17 15:03		P7K0551
2,2-Dichloropropane BR 2-Chlorotoluene BR 4-Chlorotoluene BR 4-Isopropyltoluene BR 3-cetone 0.044 3-arzene BR 3-romobenzene BR 3-romochloromethane BR	_ mg/kg dry	0.0029	0.00015	1	8260B	11/30/17 15:03		P7K0551
2-Chlorotoluene BR 4-Chlorotoluene BR 4-Isopropyitoluene BR Acetone 0.044 Benzene BR Bromobenzene BR Bromochloromethane BR	mg/kg dry	0.0029	0.00012	1	8260B	11/30/17 15:03		P7K0551
A-Chlorotoluene BR A-Isopropyitoluene BR Acetone 0.044 Benzene BR Bromobenzene BR Bromochloromethane BR	. mg/kg dry	0.0029	0.00014	1	8260B	11/30/17 15:03		P7K0551
A-Isopropy/toluene BR Acetone 0.044 Benzene BR Bromobenzene BR Bromochloromethane BR	. mg/kg dry	0.0029	0.00015	1	8260B	11/30/17 15:03		P7K0551
Acetone 0.044 Benzene BR Bromobenzene BR Bromochloromethane BR	trig/kg dry	0.0029	0.00017	1	8260B	11/30/17 15:03		P7K0551
Benzene BR Bromobenzene BR Bromochloromethane BR Bromodichloromethane BR	. mg/kg dry	0.0029	0.00014		8260B	11/30/17 15:03		P7K0551
Bromobenzene BR Bromochloromethane BR Bromodichloromethane BR		0.029	0.00072	1	8260B			
Bromochloromethane BRI Bromodichloromethane BRI		0.0018	0.00017	1	8260B	11/30/17 15:03 11/30/17 15:03		P7K0551
Bromodichloromethane BR		0.0029	0.00024	1	8260B			P7K0551
		0.0029	0.00016	1	8260B	11/30/17 15:03		P7K0551
Bromoform BRI		0.0029	0.00016	1	8260B	11/30/17 15:03		P7K0551
	mg/kg dry	0.0029	0.00033	1	8260B	11/30/17 15:03		P7K0551
Bromomethane BRI	mg/kg dry	0.0059	0.00036	*	8260B	11/30/17 15:03		P7K0551
Carbon Tetrachloride BRI	mg/kg dry	0.0029	0.00015	1		11/30/17 15:03		P7K0551
Chlorobenzene BRI	mg/kg dry	0.0029	0.00016	1	8260B	11/30/17 15:03		P7K0551
thloroethane BRL	mg/kg dry	0.0059	0.00024	1	8260B	11/30/17 15:03		P7K0551
hloroform BRL	mg/kg dry	0.0029	0.00024		8260B	11/30/17 15:03		P7K0551
hloromethane BRL	mg/kg dry	0.0029	0.00021	1	8260B	11/30/17 15:03		P7K0551
s-1,2-Dichloroethylene BRL	mg/kg dry	0.0029	0.00020	1	8260B	11/30/17 15:03		P7K0551
s-1,3-Dichloropropylene BRL	mg/kg dry			1	8260B	11/30/17 15:03		P7K0551
bromochioromethane BRL		0.0029	0.000099	1	8260B	11/30/17 15:03		P7K0551
ichlorodifluoromethane BRL	mg/kg dry	0.0029	0.00012	1 1	8260B 8260B	11/30/17 15:03 11/30/17 15:03		P7K0551

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217 Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-2 Prism Sample ID: 7110418-02 Prism Work Order: 7110418 Time Collected: 11/20/17 13:20 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0029	0.00011	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Isopropyi Ether	BRL	mg/kg dry	0.0029	0.00012	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0029	0.00017	1	8260B	11/30/17 15:0	3 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.0059	0.00027	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.029	0.00027	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.059	0.00027	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.029	0.00025	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.0059	0.00016	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0059	0.000094	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.0059	0.000093	1	8260B	11/30/17 15:0	3 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0029	0.00015	1	8260B	11/30/17 15:0	3 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0029	0.00017	1	8260B	11/30/17 15:0	3 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0029	0.00012	1	8260B	11/30/17 15:0	3 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0029	0.00014	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0029	0.00018	1	8260B	11/30/17 15:0	3 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0029	0.000099	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Tetrachloroethylene	BRL	mg/kg dry	0.0029	0.00014	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0029	0.00017	1	8260B	11/30/17 15:0	3 ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0029	0.00018	1	8260B	11/30/17 15:0	3 ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0029	0.00015	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0029	0.00019	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0029	0.00019	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Vinyl acetate	BRL	mg/kg dry	0.015	0.00040	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.0029	0.00014	1	8260B	11/30/17 15:0	3 ANG	P7K0551
Xylenes, total	BRL	mg/kg dry	0.0088	0.00055	1	8260B	11/30/17 15:0	3 ANG	P7K0551
			Surrogate	·		Recov	/ery	Control	Limits
			A Dromeflu				. 87	70 400	

	CONTROL FILMING
97 %	70-130
98 %	84-123
89 %	76-129
	97 % 98 %

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-3 Prism Sample ID: 7110418-03 Prism Work Order: 7110418 Time Collected: 11/20/17 14:10 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters	·								
% Solids	77.5	% by Weight	0.100	0.100	1	"8M2540 G	12/1/17 16:00	JLB	P7L003
Volatile Organic Compounds b	y GC/MS								
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0031	0.00026	1	8260B	12/1/17 16:20	ANG	P7L003
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L003
,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0031	0.00021	1	8260B	12/1/17 16:20	ANG	P7L003
1,2-Trichloroethane	BRL	mg/kg dry	0.0031	0.00028	1	8260B	12/1/17 16:20	ANG	P7L003
,1-Dichloroethane	BRL	mg/kg dry	0.0031	0.000087	1	8260B	12/1/17 16:20	ANG	P7L003
,1-Dichloroethylene	BRL	mg/kg dry	0.0031	0.00014	1	8260B	12/1/17 16:20		P7L003
,1-Dichloropropylene	BRL	mg/kg dry	0.0031	0.00017	1	8260B	12/1/17 16:20		P7L003
,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0031	0.00018	1	8260B	12/1/17 16:20		P7L003
,2,3-Trichloropropane	BRL	mg/kg dry	0.0031	0.00040	1	8260B	12/1/17 16:20		P7L003
,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0031	0.00023	1	8260B	12/1/17 16:20	ANG	P7L003
,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0031	0.00024	1	8260B	12/1/17 16:20	_	P7L003
,2-Dibromoethane	BRL	mg/kg dry	0.0031	0.00013	1	8260B	12/1/17 16:20	ANG	P7L003
,2-Dichlorobenzene	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L003
,2-Dichloroethane	BRL	mg/kg dry	0.0031	0.00019	1	8260B	12/1/17 16:20	ANG	P7L003
,2-Dichloropropane	BRL	mg/kg dry	0.0031	0.00019	1	8260B	12/1/17 16:20	ANG	P7L003
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0031	0.00024	1	8260B	12/1/17 16:20	ANG	P7L003
,3-Dichlorobenzene	BRL	mg/kg dry	0.0031	0.00021	1	8260B	12/1/17 16:20	ANG	P7L003
,3-Dichloropropane	BRL	mg/kg dry	0.0031	0.00016	1	8260B	12/1/17 16:20	ANG	P7L003
4-Dichlorobenzene	BRL	mg/kg dry	0.0031	0.00012	1	8260B	12/1/17 16:20	ANG	P7L003
2-Dichloropropane	BRL	rng/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L003
Chloratoluene	BRL	mg/kg dry	0.0031	0.00016	1	8260B	12/1/17 16:20	ANG	P7L003
Chiorotoluene	BRL	mg/kg dry	0.0031	0.00019	14	8260B	12/1/17 16:20	ANG	P7L003
Isopropytoluene	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L0031
cetone	0.038	mg/kg dry	0.031	0.00076	1	8260B	12/1/17 16:20	ANG	P7L0031
enzene	BRL	mg/kg dry	0.0019	0.00018	1	8260B	12/1/17 16:20	ANG	P7L0031
romobenzene	BRL	mg/kg dry	0.0031	0.00026	1	8260B	12/1/17 16:20	ANG	P7L0031
romochloromethane	BRL	mg/kg dry	0.0031	0.00017	1	8260B	12/1/17 16:20	ANG	P7L0031
romodichloromethane	BRL	mg/kg dry	0.0031	0.00017	1	8260B	12/1/17 16:20		P7L0031
ronoform	BRL	mg/kg dry	0.0031	0.00035	1	8260B	12/1/17 16:20	ANG ANG	P7L0031
omomethane	BRL	mg/kg dry	0.0062	0.00038	1	8260B	12/1/17 16:20	ANG	P7L0031
arbon Tetrachloride	BRL	mg/kg dry	0.0031	0.00016	1	8260B			P7L0031
nlorobenzene	BRL	mg/kg dry	0.0031	0.00017	1	8260B	12/1/17 16:20 12/1/17 16:20	ANG	
Noroethane	BRL	mg/kg dry	0.0062	0.00 026	1	8260B		ANG	P7L0031
nloroform	BRL	mg/kg dry	0.0031	0.00023	1 1	8260B	12/1/17 16:20	ANG	P7L0031
Noromethane	BRL	mg/kg dry	0.0031	0.00023			12/1/17 16:20	ANG	P7L0031
-1,2-Dichloroethylene	BRL	mg/kg dry	0.0031		1	8260B	12/1/17 16:20	ANG	P7L0031
-1,3-Dichloropropylene	BRL	mg/kg dry		0.00013	1	8260B	12/1/17 16:20	ANG	P7L0031
bromochloromethane	BRL		0.0031	0.00010	1	8260B	12/1/17 16:20	ANG	P7L0031
chlorodifluoromethane	BRL	mg/kg dry mg/kg dry	0.0031 0.0031	0.00013 0.00014	1 1	8260B 8260B	12/1/17 16:20	ANG	P7L0031 P7L0031

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217 Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-3 Prism Sample ID: 7110418-03 Prism Work Order: 7110418 Time Collected: 11/20/17 14:10 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0031	0.00012	1	6260B	12/1/17 16:20	ANG	P7L0031
Isopropyl Ether	BRL	mg/kg dry	0.0031	0.00013	1	8260B	12/1/17 16:20	ANG	P7L0031
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0031	0.00018	1	8260B	12/1/17 16:20	ANG	P7L0031
m,p-Xylenes	BRL	mg/kg dry	0.0062	0.00029	1	8260B	12/1/17 16:20	ANG	P7L0031
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.031	0.00028	1	8260B	12/1/17 16:20	ANG	P7L0031
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.062	0.00028	1	8260B	12/1/17 16:20	ANG	P7L0031
Methyi Isobutyi Ketone	BRL	mg/kg dry	0.031	0.00027	1	8260B	12/1/17 16:20	ANG	P7L0031
Methylene Chloride	BRL	mg/kg dry	0.0062	0.00018	1	8260B	12/1/17 16:20	ANG	P7L0031
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0062	0.00010	1	8260B	12/1/17 16:20	ANG	P7L0031
Naphthalene	BRL	mg/kg dry	0.0062	0.000099	1	8260B	12/1/17 16:20	ANG	P7L0031
n-Butylbenzene	BRL	mg/kg dry	0.0031	0.00016	1	8260B	12/1/17 16:20	ANG	P7L0031
n-Propylbenzene	BRL	mg/kg dry	0.0031	0.00019	1	8260B	12/1/17 16:20	ANG	P7L0031
o-Xylene	BRL	mg/kg dry	0.0031	0.00013	1	8260B	12/1/17 16:20	ANG	P7L0031
sec-Butylbenzene	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L0031
Styrene	BRL	mg/kg dry	0.0031	0.00019	1	8260B	12/1/17 16:20	ANG	P7L0031
tert-Butylbenzene	BRL	mg/kg dry	0.0031	0.00011	1	8260B	12/1/17 16:20	ANG	P7L0031
Tetrachloroethylene	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L0031
Toluene	BRL	mg/kg dry	0.0031	0.00018	1	8260B	12/1/17 16:20	ANG	P7L0031
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0031	0.00019	1	8260B	12/1/17 16:20	ANG	P7L0031
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0031	0.00016	1	8260B	12/1/17 16:20	ANG	P7L0031
Trichloroethylene	BRL	mg/kg dry	0.0031	0.00020	1	8260B	12/1/17 16:20	ANG	P7L0031
Trichlorofluoromethane	0.0033	mg/kg dry	0.0031	0.00020	1	8260B	12/1/17 16:20	ANG	P7L0031
Vinyi acetate	BRL	mg/kg dry	0.016	0.00043	1	8260B	12/1/17 16:20	ANG	P7L0031
Vinyl chloride	BRL	mg/kg dry	0.0031	0.00015	1	8260B	12/1/17 16:20	ANG	P7L0031
Xylenes, total	BRL	mg/kg dry	0.0094	0.00058	1	8260B	12/1/17 16:20	ANG	P7L0031
		- ·	Surrogate			Recov	rery	Control L	imits
			4-Bromofluo	rohenzene		07	06	70-190	

	Reportery	
4-Bromofluorobenzene	97 %	70-130
Dibromofluoromethane	104 %	84-123
Toluene-d8	95 %	76-129

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-4 Prism Sample ID: 7110418-04 Prism Work Order: 7110418 Time Collected: 11/20/17 14:54 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDI.	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
General Chemistry Parameters								
% Solids	76.8	% by Weight	0.100	0.100	1	*SM2540 G	12/1/17 16:00 JLB	P7L003
/olatile Organic Compounds by	GC/MS							
,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0046	0.00037	1	8260B	11/30/17 15:58 ANG	P7K055
1,1-Trichloroethane	BRL	mg/kg dry	0.0046	0.00022	4	8260B	11/30/17 15:58 ANG	P7K055
,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0046	0.00031	1	8260B	11/30/17 15:58 ANG	P7K055
,1,2-Trichloroethane	BRL	mg/kg dry	0.0046	0.00040	1	8260B	11/30/17 15:58 ANG	P7K055
,1-Dichloroethane	BRL	mg/kg dry	0.0046	0.00013	1	8260B	11/30/17 15:58 ANG	P7K055
,1-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00020	1	82608	11/30/17 15:58 ANG	P7K055
,1-Dichloropropylene	BRL	mg/kg dry	0.0046	0.00025	1	8260B	11/30/17 15:58 ANG	P7K055
,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0046	0.00026	1	8260B	11/30/17 15:58 ANG	P7K055
,2,3-Trichloropropane	BRL	mg/kg dry	0.0046	0.00058	1	8260B	11/30/17 15:58 ANG	P7K055
,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0046	0.00034	1	8260B	11/30/17 15:58 ANG	P7K055
,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0046	0.00035	1	8260B	11/30/17 15:58 ANG	P7K055
,2-Dibromoethane	BRL	mg/kg dry	0.0046	0.00018	1	8260B	11/30/17 15:58 ANG	P7K055
,2-Dichlorobenzene	BRL	rng/kg dry	0.0046	0.00021	1	8260B	11/30/17 15:58 ANG	P7K055
,2-Dichloroethane	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:58 ANG	P7K055
2-Dichloropropane	BRL	mg/kg dry	0.0046	0.00028	1	8260B	11/30/17 15:58 ANG	P7K055
3,5-Trimethylbenzene	BRL	mg/kg dry	0.0046	0.00034	1	8260B	11/30/17 15:58 ANG	P7K055
3-Dichlorobenzene	BRL	mg/kg dry	0.0046	0.00030	1	8260B	11/30/17 15:58 ANG	P7K055
3-Dichloropropane	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 15:58 ANG	P7K055
4-Dichlorobenzene	BRL	mg/kg dry	0.0046	0.00018	1	8260B	11/30/17 15:58 ANG	P7K055
2-Dichloropropane	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 15:58 ANG	P7K055
Chlorotoluene	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 15:58 ANG	P7K055
Chlorotoluene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:58 ANG	P7K055
Isopropyitoluene	0.0043 J	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 15:58 ANG	P7K055
cetone	0.026 J	mg/kg dry	0.046	0.0011	• 1	8260B		P7K055
enzene	BRL	mg/kg dry	0.0027	0.00026	1	8260B	11/30/17 15:58 ANG	
romobenzene	BRL	mg/kg dry	0.0046	0.00038	1	8260B	11/30/17 15:58 ANG	P7K055
omochloromethane	BRL	mg/kg dry	0.0046	0.00035	1	8260B	11/30/17 15:58 ANG	P7K0553
romodichloromethane	BRL	mg/kg dry	0.0046	0.00025	1	8260B	11/30/17 15:58 ANG	P7K055
omoform	BRL	mg/kg dry	0.0046	0.00023	3 5	8260B	11/30/17 15:58 ANG	P7K0551
omomethane	BRL	mg/kg dry	0.0091	0.00052	1		11/30/17 15:58 ANG	P7K055
arbon Tetrachloride	BRL	mg/kg dry			•	8260B	11/30/17 15:58 ANG	P7K0551
Norobenzene	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 15:58 ANG	P7K0551
Noroethane	BRL		0.0046	0.00024	1	8260B	11/30/17 15:58 ANG	P7K0551
lloroform	BRL	mg/kg dry mg/kg doy	0.0091	0.00038	1	8260B	11/30/17 15:58 ANG	P7K0551
loromethane	BRL	mg/kg dry mg/kg dry	0.0046	0.00033	1	82608	11/30/17 15:58 ANG	P7K0551
-1,2-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00031	1	8260B	11/30/17 15:58 ANG	P7K0551
		mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 15:58 ANG	P7K0551
-1,3-Dichloropropylene	BRL	mg/kg dry	0.0046	0.00015	1	8260B	11/30/17 15:58 ANG	P7K0551
promochloromethane chlorodifluoromethane	BRL	mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 15:58 ANG	P7K0551

Project: Zion Ave. Site

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Sample Matrix: Solid

Client Sample ID: B-4 Prism Sample ID: 7110418-04 Prism Work Order: 7110418 Time Collected: 11/20/17 14:54 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch
Ethylbenzene	BRL	mg/kg dry	0.0046	0.00017	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Isopropy! Ether	BRL	mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:5	8 ANG	P7K0551
m,p-Xylenes	BRL	rng/kg dry	0.0091	0.00042	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.046	0.00041	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.091	0.00041	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Methyi Isobutyi Ketone	BRL	mg/kg dry	0.046	0.00039	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Methylene Chioride	BRL	mg/kg dry	0.0091	0.00026	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0091	0.00015	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.0091	0.00014	1	8260B	11/30/17 15:5	8 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 15:5	8 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:5	8 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 15:5	8 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:5	8 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0046	0.00015	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Tetrachioroethylene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 15:5	8 ANG	P7K0551
Toluene	0.0030 J	mg/kg dry	0.0046	0.00026	1	8260B	11/30/17 15:56	ANG	P7K0551
rans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 15:5	8 ANG	P7K0551
rans-1,3-Dichioropropylene	BRL	mg/kg dry	0.0046	0.00024	1	8260B	11/30/17 15:5/	8 ANG	P7K0551
Frichloroethylene	BRL	mg/kg dry	0.0046	0.00029	1	8260B	11/30/17 15:58	8 ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0046	0.00029	1	8260B	11/30/17 15:5		P7K0551
Vinyl acetate	BRL	mg/kg dry	0.023	0.00062	1	8260B	11/30/17 15:5		P7K0551
vinyi chloride	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 15:5		P7K0551
Xylenes, total	BRL	mg/kg dry	0.014	0.00085	1	8260B	11/30/17 15:50		P7K0551
			Surrogate			Recov	ery	Control I	Limits
			A-Bromoflug				0/	70 400	

ounogate	Recovery	Control Limits
4-Bromofluorobenzene	99 %	70-130
Dibromofluoromethane	97 %	84-123
Toluene-d8	88 %	76-129

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Project: Zion Ave. Site

500-K Clanton Rd. Charlotte, NC 28217

Geoscience Group

Attn: Tom Hassett

Sample Matrix: Solid

Client Sample ID: B-5 Prism Sample ID: 7110418-05 Prism Work Order: 7110418 Time Collected: 11/20/17 15:20 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parameters	ì								
% Solids	78.5	% by Weight	0.100	0.100	1	*SM2540 G	12/1/17 16:(0 JLB	P7L0036
TCLP Extraction by EPA 1311									
TCLP Extraction	Complete	N/A			1	*1311 ZHE	12/5/17 9:0	D ANG	P7L0034
TCLP Volatile Organic Compou	unds by GC/MS								
1,1-Dichloroethylene	BRL	mg/L	0.035	0.00083	1	*8260B	12/6/17 18:0	6 KDM	P7L0102
1,2-Dichloroethane	BRL	mg/L	0.025	0.00066	1	*8260B	12/6/17 18:0		P7L0102
1,4-Dichlorobenzene	BRL	mg/L	0.38	0.00050	1	*8260B	12/6/17 18:0		P7L0102
Benzene	BRL	mg/L	0.025	0.00048	1	*8260B	12/6/17 18:0		P7L0102
Carbon Tetrachioride	BRL	mg/L	0.025	0.0011	1	*8260B	12/6/17 18:0		P7L0102
Chlorobenzene	BRL	- mg/L	5.0	0.00062	1	*8260B	12/6/17 18:0		P7L0102
Chloroform	BRL	mg/L	0.30	0.00076	1	*8260B	12/6/17 18:0		P7L0102
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/L	10	0.0024	1	*8260B	12/6/17 18:0		P7L0102
Tetrachloroethylene	BRL	mg/L	0.035	0.00098	1	*8260B	12/6/17 18:0		P7L0102
Trichloroethylene	BRL	mg/L	0.025	0.00078	1	*8260B	12/6/17 18:0		P7L0102
/inyl chloride	BRL	mg/L	0.020	0.00097	1	*8260B	12/6/17 18:0		P7L0102
	·		Surrogate			Recove		Control	
			4-Bromoflug	mhenzene		86			
			Dibromofluc			87		80-124	
			Toluene-d8	// Onternation		88		75-129	
/olatile Organic Compounds by	COME					00	~	77-123	
,1,1,2-Tetrachloroethane	BRL	mailer	0.0040	0.00004					
,1,1-Trichloroethane	BRL	mg/kg dry	0.0042	0.00034	1	8260B	11/30/17 16:	-	P7K0551
,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0042	0.00020	1	8260B	11/30/17 16:		P7K0551
,1,2-Trichloroethane	BRL	mg/kg dry mg/kg dry	0.0042	0.00028	1	8260B	11/30/17 16:		P7K0551
,1-Dichloroethane	BRL	mg/kg dry mg/kg dry	0.0042	0.00037	1	82608	11/30/17 16:		P7K0551
,1-Dichloroethylene	BRL	mg/kg dry maika day	0.0042	0.00012	1	8260B	11/30/17 16:		P7K0551
,1-Dichloropropylene	BRL	mg/kg dry mg/kg dry	0.0042	0.00018	1	8260B	11/30/17 16:		P7K0551
	DILL				1	8260B	11/30/17 16:	25 ANG	P7K0551
2 % 0000000000000000000000000000000000	DDI		0.0042	0.00023					
,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0042	0.00024	1	8260B	11/30/17 16:		P7K0551
,2,3-Trichloropropane	BRL	mg/kg dry mg/kg dry	0.0042 0.0042	0.00024 0.00053	1	8260B 8260B	11/30/17 16:	5 ANG	P7K0551
,2,3-Trichloropropane ,2,4-Trichlorobenzene	BRL BRL	mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042	0.00024 0.00053 0.00031	1 1 1	8260B 8260B 8260B	11/30/17 16: 11/30/17 16:	25 ANG 25 ANG	P7K0551 P7K0551
,2,3-Trichloropropane ,2,4-Trichlorobenzene ,2,4-Trimethylbenzene	BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032	1 1 1	8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16::	25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551
2,3-Trichloropropane ,2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane	BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017	1 1 1 1	8260B 8260B 8260B 8260B 8260B	11/30/17 16: 11/30/17 16:	25 ANG 25 ANG 25 ANG	P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene	BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020	1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16::	25 ANG 25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene 2-Dichloroethane	BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.000 25	1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16: 11/30/17 16: 11/30/17 16: 11/30/17 16:	25 ANG 25 ANG 25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane ,2,4-Trichlorobenzene ,2,4-Trimethylbenzene ,2-Dibromoethane ,2-Dichlorobenzene 2-Dichlorobenzene 2-Dichloropropane	BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00 025 0.00026	1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16::	25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane ,2,4-Trichlorobenzene ,2,4-Trimethylbenzene ,2-Dibromoethane ,2-Dichlorobenzene 2-Dichloropethane 2-Dichloropropane 3,5-Trimethylbenzene	BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00025 0.00026 0.00031	1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16: 11/30/17 16: 11/30/17 16: 11/30/17 16: 11/30/17 16: 11/30/17 16:	25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene 2-Dichlorobenzene 3,5-Trimethylbenzene 3-Dichlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00025 0.00028 0.00031 0.00028	1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16::	25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene 2-Dichloroethane 2-Dichloropropane 3,5-Trimethylbenzene 3-Dichlorobenzene 3-Dichloropropane	BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00025 0.00026 0.00031	1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16::	25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 35 ANG 35 ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene 2-Dichloropenzene 3,5-Trimethylbenzene 3-Dichlorobenzene 3-Dichloropenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00025 0.00028 0.00031 0.00028	1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16::	 ANG ANG	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551
2,3-Trichloropropane 2,4-Trichlorobenzene 2,4-Trimethylbenzene 2-Dibromoethane 2-Dichlorobenzene 2-Dichloroethane 2-Dichloropropane 3,5-Trimethylbenzene 3-Dichlorobenzene 3-Dichloropropane	BRL BRL BRL BRL BRL BRL BRL BRL BRL	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042 0.0042	0.00024 0.00053 0.00031 0.00032 0.00017 0.00020 0.00025 0.00026 0.00028 0.00028 0.00021	1 1 1 1 1 1 1 1	8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16:: 11/30/17 16::	 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 25 ANG 35 ANG 5 ANG 5 ANG 5 ANG 5 ANG 5 ANG 5 ANG 	P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551 P7K0551

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Laboratory Report 12/07/2017

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-5 Prism Sample ID: 7110418-05 Prism Work Order: 7110418 Time Collected: 11/20/17 15:20 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
4-Chlorotoluene	BRL	mg/kg dry	0.0042	0.00025	1	8260B	11/30/17 16:25 ANG	P7K0551
4-Isopropyttoluene	BRL	mg/kg dry	0.0042	0.00020	1	8260B	11/30/17 16:25 ANG	P7K0551
Acetone	0.029 J	mg/kg dry	0.042	0.0010	1	6260B	11/30/17 16:25 ANG	P7K0551
Benzene	BRL	mg/kg dry	0.0025	0.00024	1	8260B	11/30/17 16:25 ANG	P7K0551
Bromobenzene	BRL	mg/kg dry	0.0042	0.00035	1	8260B	11/30/17 16:25 ANG	P7K0551
Bromochloromethane	BRL	mg/kg dry	0.0042	0.00023	1	8260B	11/30/17 16:25 ANG	P7K0551
Bromodichloromethane	BRL	mg/kg dry	0.0042	0.00023	1	8260B	11/30/17 16:25 ANG	P7K0551
Bromoform	BRL	mg/kg dry	0.0042	0.00047	1	8260B	11/30/17 16:25 ANG	P7K0551
Bromomethane	BRL	mg/kg dry	0.0083	0.00051	1	8260B	11/30/17 16:25 ANG	P7K0551
Carbon Tetrachloride	BRL	mg/kg dry	0.0042	0.00021	1	8260B	11/30/17 16:25 ANG	P7K0551
Chlorobenzene	BRL	mg/kg dry	0.0042	0.00022	1	8260B	11/30/17 16:25 ANG	P7K0551
Chloroethane	BRL	mg/kg dry	0.0083	0.00035	1	8260B	11/30/17 16:25 ANG	P7K0551
Chloroform	BRL	mg/kg dry	0.0042	0.00030	1	8260B	11/30/17 16:25 ANG	P7K0551
Chloromethane	BRL	mg/kg dry	0.0042	0.00028	1	8260B	11/30/17 16:25 ANG	P7K0551
cis-1,2-Dichloroethylene	BRL	mg/kg dry	0.0042	0.00018	1	8260B	11/30/17 16:25 ANG	P7K0551
cis-1,3-Dichloropropylene	BRL	mg/kg dry	0.0042	0.00014	1	8260B	11/30/17 16:25 ANG	P7K0551
Dibromochloromethane	BRL	mg/kg dry	0.0042	0.00017	1	8260B	11/30/17 16:25 ANG	P7K0551
Dichlorodifluoromethane	BRL	mg/kg dry	0.0042	0.00019	1	8260B	11/30/17 16:25 ANG	P7K0551
Ethylbenzene	BRL	mg/kg dry	0.0042	0.00016	1	8260B	11/30/17 16:25 ANG	P7K0551
Isopropyl Ether	BRL	mg/kg dry	0.0042	0.00017	1	8260B	11/30/17 16:25 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0042	0.00025	1	8260B	11/30/17 16:25 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.0083	0.00038	1	6260B	11/30/17 16:25 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.042	0.00038	1	8260B	11/30/17 16:25 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.083	0.00038	1	8260B	11/30/17 16:25 ANG	P7K0551
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.042	0.00035	1	8260B	11/30/17 16:25 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.0083	0.00023	1	8260B	11/30/17 16:25 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0083	0.00013	1	8260B	11/30/17 16:25 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.0083	0.00013	1	8260B	11/30/17 16:25 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0042	0.00021	:1	8260B	11/30/17 16:25 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0042	0.00025	1	8260B	11/30/17 16:25 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0042	0.00017	1	8260B	11/30/17 16:25 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0042	0.00020	1	8260B	11/30/17 16:25 ANG	P7K0551
Styrane	BRL	mg/kg dry	0.0042	0.00025	1	8260B	11/30/17 16:25 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0042	0.00014	1	8260B	11/30/17 16:25 ANG	P7K0551
Tetrachloroethylene	BRL	mg/kg dry	0.0042	0.00020	1	8260B	11/30/17 16:25 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0042	0.00024	1	8260B	11/30/17 16:25 ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0042	0.00025	1	8260B	11/30/17 16:25 ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0042	0.00022	1	8260B	11/30/17 16:25 ANG	P7K0551
Trichioroethylene	BRL	mg/kg dry	0.0042	0.00027	1	8260B	11/30/17 16:25 ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0042	0.00027	1	8260B	11/30/17 16:25 ANG	P7K0551
Vinyl acetate	BRL	mg/kg dry	0.021	0.00027	1	8260B	11/30/17 16:25 ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.021	0.00037	1	8260B		P7K0551
•							11/30/17 16:25 ANG	
Xylenes, total	BRL	mg/kg dry	0.012	0.00078	1	8260B	11/30/17 16:25 ANG	P7K05

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217 Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-5 Prism Sample ID: 7110418-05 Prism Work Order: 7110418 Time Collected: 11/20/17 15:20 Time Submitted: 11/21/17 09:15

Parameter	Result	Units -	Report Limit	MÐL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
			Surrogate		Recov	iry	Control L	imits	
			4-Bromoflue	robenzene		98	%	70-130	
			Dibromofluoromethane		98 %		84-123		
			Toluene-d8			87	%	76-129	

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-6 Prism Sample ID: 7110418-06 Prism Work Order: 7110418 Time Collected: 11/20/17 15:44 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
General Chemistry Parameters								
% Solids	79. A	% by Weight	0.100	0.100	1	*SM2540 G	12/1/17 16:00 JLB	P7L0038
Volatile Organic Compounds b	y GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0046	0.00038	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0046	0.00031	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0046	0.00041	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1-Dichloroethane	BRL	mg/kg dry	0.0046	0.00013	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00020	1	8260B	11/30/17 16:53 ANG	P7K0551
1,1-Dichloropropylene	BRL	mg/kg dry	0.0046	0.00025	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0046	0.00026	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0046	0.00059	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0046	0.00034	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0046	0.00035	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2-Dibromoethane	BRL	mg/kg dry	0.0046	0.00018	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2-Dichloroethane	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 16:53 ANG	P7K0551
1,2-Dichloropropane	BRL	mg/kg dry	0.0046	0.00028	Ť	8260B	11/30/17 16:53 ANG	P7K0551
1,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0046	0.00035	1	8260B	11/30/17 16:53 ANG	P7K0551
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0046	0.00030	1	8260B	11/30/17 16:53 ANG	P7K0551
1,3-Dichloropropane	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 16:53 ANG	P7K0551
1,4-Dichlorobenzene	BRL	mg/kg dry	0.0046	0.00018	1	8260B	11/30/17 16:53 ANG	P7K0551
2,2-Dichloropropane	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53 ANG	P7K0551
2-Chlorotoluene	BRL	mg/kg dry	0.0046	0.00024	1	8260B	11/30/17 16:53 ANG	P7K0551
l-Chlorotoluene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 16:53 ANG	P7K0551
l-Isopropyttoluene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53 ANG	P7K0551
Acetone	0.051	mg/kg dry	0.046	0.0011	1	8260B	11/30/17 16:53 ANG	P7K0551
Benzene	BRL	mg/kg dry	0.0028	0.00027	1	8260B	11/30/17 16:53 ANG	P7K0551
Bromobenzene	BRL	mg/kg dry	0.0046	0.00038	1	8260B	11/30/17 16:53 ANG	P7K0551
Bromochloromethane	BRL	mg/kg dry	0.0046	0.00025	1	8260B	11/30/17 16:53 ANG	P7K0551
iromodichloromethane	BRL	mg/kg dry	0.0046	0.00026	1	8260B	11/30/17 16:53 ANG	P7K0551
Iromoform	BRL	mg/kg dry	0.0046	0.00052	1	8260B	11/30/17 16:53 ANG	P7K0551
Iromomethane	BRL	mg/kg dry	0.0092	0.00057	1	8260B	11/30/17 16:53 ANG	P7K0551
arbon Tetrachloride	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 16:53 ANG	P7K0551
hlorobenzene	BRL	mg/kg dry	0.0046	0.00024	1	8260B	11/30/17 16:53 ANG	P7K0551
chloroethane	BRL	mg/kg dry	0.0092	0.00038	1	8260B	11/30/17 16:53 ANG	P7K0551
chloroform	BRL	mg/kg dry	0.0046	0.00033	1	8260B	11/30/17 16:53 ANG	P7K0551
bloromethane	BRL	mg/kg dry	0.0046	0.00031	1	8260B		P7K0551
is-1,2-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00031	1	8260B	11/30/17 16:53 ANG	
s-1,3-Dichloropropylene	8RL	mg/kg dry					11/30/17 16:53 ANG	P7K0551
ibromochloromethane	BRL		0.0046	0.00015	1	8260B	11/30/17 16:53 ANG	P7K0551
ichlorodifluoromethane	BRL	mg/kg dry mg/kg dry	0.0046 0.0046	0.00019 0.00021	1 1	8260B 8260B	11/30/17 16:53 ANG 11/30/17 16:53 ANG	P7K0551 P7K0551

Full-Service Analytical & Environmental Solutions

Laboratory Report

12/07/2017

Project: Zion Ave. Site

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Sample Matrix: Solid

Client Sample ID: B-6 Prism Sample ID: 7110418-06 Prism Work Order: 7110418 Time Collected: 11/20/17 15:44 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Ar Date/Time	nalyst	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0046	0.00018	1	8260B	11/30/17 16:53	ANG	P7K0551
Isopropyl Ether	BRL	mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 16:53	ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 16:53	ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.0092	0.00042	1	8260B	11/30/17 16:53	ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.046	0.00041	1	8260B	11/30/17 16:53	ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.092	0.00041	1	8260B	11/30/17 16:53	ANG	P7K0551
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.046	0.00039	1	8260B	11/30/17 16:53	ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.0092	0.00026	1	8260B	11/30/17 16:53	ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.0092	0.00015	1	8260B	11/30/17 16:53	ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.0092	0.00015	1	8260B	11/30/17 16:53	ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0046	0.00023	1	8260B	11/30/17 16:53	ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 16:53	ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0046	0.00019	1	8260B	11/30/17 16:53	ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53	ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0046	0.00028	1	8260B	11/30/17 16:53	ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0046	0.00016	1	8260B	11/30/17 16:53	ANG	P7K0551
Tetrachioroethylene	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53	ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0046	0.00026	1	8260B	11/30/17 16:53	ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0046	0.00027	1	8260B	11/30/17 16:53	ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0046	0.00024	1	8260B	11/30/17 16:53	ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0046	0.00030	1	8260B	11/30/17 16:53	ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0046	0.00030	1	8260B	11/30/17 16:53	ANG	P7K0551
Vinyl acetate	BRL	mg/kg dry	0.023	0.00063	1	8260B	11/30/17 16:53	ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.0046	0.00022	1	8260B	11/30/17 16:53	ANG	P7K0551
Xylenes, total	BRL	mg/kg dry	0.014	0.00086	1	8260B	11/30/17 16:53	ANG	P7K0551
			Surrogate			Recov	ery C	ontrol L	imits

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	98 %	70-130
Dibromofluoromethane	97 %	84-123
Toluene-d8	88 %	76-129

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-7 Prism Sample ID: 7110418-07 Prism Work Order: 7110418 Time Collected: 11/20/17 16:08 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
General Chemistry Parameters			_					
% Solids	74.8	% by Weight	0.100	0.100	1	*8M2540 G	12/1/17 16:00 JLB	P7L0036
Volatile Organic Compounds by	GC/MS							
1,1,1,2-Tetrachloroethane	BRL	mg/kg dry	0.0064	0.00053	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0064	0.00044	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0064	0.00057	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1-Dichloroethane	BRL	mg/kg dry	0.0064	0.00018	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1-Dichloroethylene	BRL	mg/kg dry	0.0064	0.00028	1	8260B	11/30/17 17:20 ANG	P7K0551
1,1-Dichloropropylene	BRL	mg/kg dry	0.0064	0.00035	1	8260B	11/30/17 17:20 ANG	P7K0551
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0064	0.00037	1	8260B	11/30/17 17:20 ANG	P7K0551
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0064	0.00082	1	8260B	11/30/17 17:20 ANG	P7K0551
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0064	0.00048	1	8260B	11/30/17 17:20 ANG	P7K0551
1,2,4-Trimethyibenzene	BRL	mg/kg dry	0.0064	0.00049	1	8260B	11/30/17 17:20 ANG	P7K0551
,2-Dibromoethane	BRL	mg/kg dry	0.0064	0.00026	1	8260B	11/30/17 17:20 ANG	P7K0551
,2-Dichlorobenzene	BRL	mg/kg dry	0.0064	0.00030	1	8260B	11/30/17 17:20 ANG	P7K0551
,2-Dichloroethane	BRL	mg/kg dry	0.0064	0.00038	1	8260B	11/30/17 17:20 ANG	P7K0551
,2-Dichloropropane	BRL	mg/kg dry	0.0064	0.00040	1	8260B	11/30/17 17:20 ANG	P7K0551
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0064	0.00049	1	8260B	11/30/17 17:20 ANG	P7K0551
,3-Dichlorobenzene	BRL	mg/kg dry	0.0064	0.00043	1	8260B	11/30/17 17:20 ANG	P7K0551
,3-Dichloropropane	BRL	mg/kg dry	0.0064	0.00032	1	8260B	11/30/17 17:20 ANG	P7K0551
,4-Dichlorobenzene	BRL	mg/kg dry	0.0064	0.00025	1	8260B	11/30/17 17:20 ANG	P7K0551
,2-Dichloropropane	BRL	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
-Chlorotoluene	8RL	mg/kg dry	0.0064	0.00033	1	8260B	11/30/17 17:20 ANG	P7K0551
-Chlorotoluene	BRL	mg/kg dry	0.0064	0.00038	1	8260B	11/30/17 17:20 ANG	P7K0551
-Isopropyttoluene	BRL	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
cetone	BRL	mg/kg dry	0.064	0.0016	1	8260B	11/30/17 17:20 ANG	P7K0551
enzene	BRL	mg/kg dry	0.0039	0.00038	1	8260B	11/30/17 17:20 ANG	P7K0551
romobenzene	BRL	mg/kg dry	0.0064	0.00054	1	8260B	11/30/17 17:20 ANG	P7K0551
romochloromethane	BRL	mg/kg dry	0.0064	0.00035	1	8260B	11/30/17 17:20 ANG	P7K0551
romodichloromethane	BRL	mg/kg dry	0.0064	0.00036	1	8260B	11/30/17 17:20 ANG	P7K0551
romoform	BRL	mg/kg dry	0.0064	0.00073	1	8260B	11/30/17 17:20 ANG	P7K0551
romomethane	BRL	mg/kg dry	0.013	0.00080	1	8260B	11/30/17 17:20 ANG	P7K0551
arbon Tetrachloride	BRL	mg/kg dry	0.0064	0.00032	1	8260B	11/30/17 17:20 ANG	P7K0551
hiorobenzene	BRL	mg/kg dry	0.0064	0.00034	1	8260B	11/30/17 17:20 ANG	P7K0551
hloroethane	BRL	mg/kg dry	0.013	0.00054	1	8260B	11/30/17 17:20 ANG	P7K0551
hioroform	BRL	mg/kg dry	0.0064	0.00047	1	8260B	11/30/17 17:20 ANG	P7K0551
hloromethane	BRL	mg/kg dry	0.0064	0.00043	1	8260B	11/30/17 17:20 ANG	P7K0551
s-1,2-Dichloroethylene	BRL	mg/kg dry	0.0064	0.00027	1	8260B	11/30/17 17:20 ANG	P7K0551
s-1,3-Dichloropropylene	BRL	mg/kg dry	0.0064	0.00022	1	8260B	11/30/17 17:20 ANG	P7K0551
bromochloromethane	BRL	mg/kg dry	0.0064	0.00027	1	82608	11/30/17 17:20 ANG	P7K0551
chlorodifluoromethane	BRL	mg/kg dry	0.0064	0.00029	1	8260B	11/30/17 17:20 ANG	P7K0551

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Laboratory Report

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-7 Prism Sample ID: 7110418-07 Prism Work Order: 7110418 Time Collected: 11/20/17 16:08 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch
Ethylbenzene	BRL	mg/kg dry	0.0064	0.00025	1	8260B	11/30/17 17:20 ANG	P7K0551
Isopropyl Ether	BRL	mg/kg dry	0.0064	0.00026	1	8260B	11/30/17 17:20 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0064	0.00038	1	8260B	11/30/17 17:20 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.013	0.00059	1	8260B	11/30/17 17:20 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.064	0.00058	1	8260B	11/30/17 17:20 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.13	0.00058	1	8260B	11/30/17 17:20 ANG	P7K0551
Mathyl Isobutyl Ketone	BRL	mg/kg dry	0.064	0.00055	1	8260B	11/30/17 17:20 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.013	0.00036	1	8260B	11/30/17 17:20 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.013	0.00021	1	8260B	11/30/17 17:20 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.013	0.00020	1	8260B	11/30/17 17:20 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0064	0.00033	1	8260B	11/30/17 17:20 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0064	0.00038	1	8260B	11/30/17 17:20 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0064	0.00026	4	8260B	11/30/17 17:20 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0064	0.00039	1	8260B	11/30/17 17:20 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0064	0.00022	1	8260B	11/30/17 17:20 ANG	P7K0551
Tetrachioroethylene	0.0070	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0064	0.00037	1	8260B	11/30/17 17:20 ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0064	0.00039	1	8260B	11/30/17 17:20 ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0064	0.00034	1	8260B	11/30/17 17:20 ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0064	0.00042	1	8260B		P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0064	0.00042	1	8260B	11/30/17 17:20 ANG 11/30/17 17:20 ANG	P7K0551
Vinyl acetate	BRL	mg/kg dry	0.032	0.00088	1	8260B	11/30/17 17:20 ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.0064	0.00031	1	8260B	11/30/17 17:20 ANG	P7K0551
Xylenes, total	BRL	mg/kg dry	0.019	0.0012	1	8260B	11/30/17 17:20 ANG	P7K0551

Surrogate	Recovery	Control Limits		
4-Bromofluorobenzene	98 %	70-130		
Dibromofluoromethane	99 %	84-123		
Toluene-d8	87 %	76-129		

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toli Free Number: 1-800/529-6364 - Fax: 704/525-0409

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-8 Prism Sample ID: 7110418-08 Prism Work Order: 7110418 Time Collected: 11/20/17 16:22 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch iD
General Chemistry Parameters	\$							
% Solids	75.0	% by Weight	0.100	0.100	1	*SM2540 G	12/1/17 16:00 JLB	P7L0031
Volatile Organic Compounds I	by GC/MS							
1,1,1,2-Tetrachloroethane	BRI.	mg/kg dry	0.0057	0.00047	1	8260B	11/30/17 17:48 ANG	P7K055
1,1,1-Trichloroethane	BRL	ing/kg dry	0.0057	0.00028	1	8260B	11/30/17 17:48 ANG	P7K055
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0057	0.00039	1	8260B	11/30/17 17:48 ANG	P7K055
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0057	0.00051	1	8260B	11/30/17 17:48 ANG	P7K055
1,1-Dichloroethane	BRL	mg/kg dry	0.0057	0.00016	1	8260B	11/30/17 17:48 ANG	P7K055
1,1-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00025	1	8260B	11/30/17 17:48 ANG	P7K055
1,1-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00031	1	8260B	11/30/17 17:48 ANG	P7K055
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00033	1	8260B	11/30/17 17:48 ANG	P7K055
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0057	0.00073	1	8260B	11/30/17 17:48 ANG	P7K055
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00043	1	8260B	11/30/17 17:48 ANG	P7K055
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0057	0.00044	10	82608	11/30/17 17:48 ANG	P7K055
1,2-Dibromoethane	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/30/17 17:48 ANG	P7K055
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00027	10	8260B	11/30/17 17:48 ANG	P7K055
,2-Dichloroethane	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 17:48 ANG	P7K055
,2-Dichloropropane	BRL	mg/kg dry	0.0057	0.00036	1	8260B	11/30/17 17:48 ANG	P7K055
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0057	0.00043	1	8260B	11/30/17 17:48 ANG	P7K055
,3-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00038	1	8260B	11/30/17 17:48 ANG	P7K055
,3-Dichloropropane	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/30/17 17:48 ANG	P7K055
,4-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/30/17 17:48 ANG	P7K055
2,2-Dichloropropane	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/30/17 17:48 ANG	P7K055
-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 17:48 ANG	P7K055
-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 17:48 ANG	P7K055
-Isopropyitoluene	0.0085	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 17:48 ANG	P7K055
Cetone	0.033 J	mg/kg dry	0.057	0.0014	1	8260B	11/30/17 17:48 ANG	P7K0551
enzene	BRL	mg/kg dry	0.0034	0.00033	1	8260B	11/30/17 17:48 ANG	P7K0551
Iromobenzene	BRL	mg/kg dry	0.0057	0.00048	1	8260B	11/30/17 17:48 ANG	P7K0551
Iromochloromethane	BRL	mg/kg dry	0.0057	0.00032	1	8260B	11/30/17 17:48 ANG	P7K0551
romodichloromethane	BRL	mg/kg dry	0.0057	0.00032	1	8260B	11/30/17 17:48 ANG	P7K0551
romoform	BRL	mg/kg dry	0.0057	0.00065	1	8260B	11/30/17 17:48 ANG	P7K0551
romomethane	BRL	mg/kg dry	0.011	0.00071	1	8260B	11/30/17 17:48 ANG	P7K0551
arbon Tetrachloride	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/30/17 17:48 ANG	P7K0551
hlorobenzene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 17:48 ANG	P7K0551
hlorcethane	BRL	mg/kg dry	0.011	0.00048	1	8260B	11/30/17 17:48 ANG	P7K0551
hloroform	BRL	mg/kg dry	0.0057	0.00041	1	8260B	11/30/17 17:48 ANG	P7K0551
hloromethane	BRL	mg/kg dry	0.0057	0.00039	1	8260B	11/30/17 17:48 ANG	P7K0551
s-1,2-Dichioroethylene	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 17:48 ANG	P7K0551
s-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00019	1	8260B	11/30/17 17:48 ANG	P7K0551
ibromochloromethane	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 17:48 ANG	P7K0551

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Laboratory Report

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: 8-8 Prism Sample ID: 7110418-08 Prism Work Order: 7110418 Time Collected: 11/20/17 16:22 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0057	0.00022	1	8260B	11/30/17 17:48 ANG	P7K0551
isopropyl Ether	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/30/17 17:48 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 17:48 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00053	1	8260B	11/30/17 17:48 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	L 8800.0	mg/kg dry	0.057	0.00052	1	8260B	11/30/17 17:48 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00052	10	8260B	11/30/17 17:48 ANG	P7K0551
Methyl Isobutyl Ketone	BRL	mg/kg dry	0.057	0.00049	1	8260B	11/30/17 17:48 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.011	0.00032	1	8260B	11/30/17 17:48 ANG	P7K0551
Methyl-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 17:48 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 17:48 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/30/17 17:48 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 17:48 ANG	P7K0551
o-Xylene	0.0024 J	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 17:48 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 17:48 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0057	0.00035	1	8260B	11/30/17 17:48 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0057	0.00019	1	8260B	11/30/17 17:48 ANG	P7K0551
Tetrachioroethylene	0.14	mg/kg dry	0.0057	0.00027	1	8260B	11/30/17 17:48 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0057	0.00033	1	8260B	11/30/17 17:48 ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 17:48 ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 17:48 ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0057	0.00037	1	8260B	11/30/17 17:48 ANG	P7K0551
Trichlorofluoromethane	BRL	mg/kg dry	0.0057	0.00037	1	8260B	11/30/17 17:48 ANG	P7K0551
Vinyl acetate	BRL	mg/kg dry	0.029	0.00079	1	8260B	11/30/17 17:48 ANG	P7K0551
Vinyl chloride	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 17:48 ANG	P7K0551
Kylenes, total	0.0024 J	mg/kg dry	0.017	0.0011	1	8260B	11/30/17 17:48 ANG	P7K0551

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	96 %	70-130
Dibromofluoromethane	98 %	84-123
Toluene-d8	88 %	76-129

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Page 20 of 35

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-4A Prism Sample ID: 7110418-09 Prism Work Order: 7110418 Time Collected: 11/20/17 16:34 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
General Chemistry Parameter	′ <u>s</u>							
% Solids	74.1	% by Weight	0.100	0.100	1	*8M2540 G	12/1/17 16:00 JLB	P7L0038
Volatile Organic Compounds	by GC/MS							
1,1,1,2-Tetrachlorosthane	BRL	mg/kg dry	0.0057	0.00047	1	8260B	11/30/17 18:15 ANG	P7K055
1,1,1-Trichloroethane	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 18:15 ANG	P7K0551
1,1,2,2-Tetrachloroethane	BRL	mg/kg dry	0.0057	0.00039	1	8260B	11/30/17 18:15 ANG	P7K0551
1,1,2-Trichloroethane	BRL	mg/kg dry	0.0057	0.00051	1	8260B	11/30/17 18:15 ANG	P7K0551
1,1-Dichloroethane	BRL	mg/kg dry	0.0057	0.00016	1	8260B	11/30/17 18:15 ANG	P7K0551
1,1-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00025	1	8260B	11/30/17 18:15 ANG	P7K0551
1,1-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00031	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2,3-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00033	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2,3-Trichloropropane	BRL	mg/kg dry	0.0057	0.00073	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2,4-Trichlorobenzene	BRL	mg/kg dry	0.0057	0.00043	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2,4-Trimethylbenzene	BRL	mg/kg dry	0.0057	0.00044	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2-Dibromoethane	BRL	ing/kg dry	0.0057	0.00023	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/30/17 18:15 ANG	P7K0551
1,2-Dichloroethane	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 18:15 ANG	P7K0551
,2-Dichloropropane	BRL	mg/kg dry	0.0057	0.00036	1	8260B	11/30/17 18:15 ANG	P7K0551
,3,5-Trimethylbenzene	BRL	mg/kg dry	0.0057	0.00043	1	8260B	11/30/17 18:15 ANG	P7K0551
1,3-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00038	1	8260B	11/30/17 18:15 ANG	P7K0551
,3-Dichloropropane	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/30/17 18:15 ANG	P7K0551
4-Dichlorobenzene	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/30/17 18:15 ANG	P7K0551
2,2-Dichloropropane	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/30/17 18:15 ANG	P7K0551
-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 18:15 ANG	P7K0551
-Chlorotoluene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 18:15 ANG	P7K0551
-Isopropyitoluene	0.0049 J	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 18:15 ANG	P7K0551
Cetone	0.055 J	mg/kg dry	0.057	0.0014	1	8260B	11/30/17 18:15 ANG	P7K0551
lenzene	BRL	mg/kg dry	0.0034	0.00033	1	8260B	11/30/17 18:15 ANG	P7K0551
Bromobenzene	BRL	mg/kg dry	0.0057	0.00048	1	8260B	11/30/17 18:15 ANG	P7K0551
romochloromethane	BRL	mġ/kg dry	0.0057	0.00032	4	8260B	11/30/17 18:15 ANG	P7K0551
romodichloromethane	BRL	mg/kg dry	0.0057	0.00032	1	8260B	11/30/17 18:15 ANG	P7K0551
iromoform	BRL	mg/kg dry	0.0057	0.00065	1	8260B	11/30/17 18:15 ANG	P7K0551
romomethane	BRL	mg/kg dry	0.011	0.00071	1	8260B	11/30/17 18:15 ANG	P7K0551
arbon Tetrachloride	BRL	mg/kg dry	0.0057	0.00029	1	8260B	11/30/17 18:15 ANG	P7K0551
hlorobenzene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 18:15 ANG	P7K0551
hloroethane	BRL	mg/kg dry	0.011	0.00048	1	8260B	11/30/17 18:15 ANG	P7K0551
hloroform	BRL	mg/kg dry	0.0057	0.00041	1	8260B	11/30/17 18:15 ANG	P7K0551
hloromethane	BRL	mg/kg dry	0.0057	0.00039	1	8260B	11/30/17 18:15 ANG	P7K0551
s-1,2-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 18:15 ANG	P7K0551
s-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00019	1	8260B	11/30/17 18:15 ANG	P7K0551
bromochioromethane	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 18:15 ANG	P7K0551
			0.0001	0.00027	•	02000	VISULT 10:10 ANG	r m0001

Attn: Tom Hassett

500-K Clanton Rd.

Charlotte, NC 28217

Full-Service Analytical & Environmental Solutions Laboratory Report

Project: Zion Ave. Site

Sample Matrix: Solid

Client Sample ID: B-4A Prism Sample ID: 7110418-09 Prism Work Order: 7110418 Time Collected: 11/20/17 16:34 Time Submitted: 11/21/17 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analyst Date/Time	Batch ID
Ethylbenzene	BRL	mg/kg dry	0.0057	0.00022	1	8260B	11/30/17 18:15 ANG	P7K0551
Isopropy! Ether	BRL	mg/kg dry	0.0057	0.00023	1	8260B	11/30/17 18:15 ANG	P7K0551
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 18:15 ANG	P7K0551
m,p-Xylenes	BRL	mg/kg dry	0.011	0.00053	1	8260B	11/30/17 18:15 ANG	P7K0551
Methyl Butyl Ketone (2-Hexanone)	BRL	mg/kg dry	0.057	0.00052	1	8260B	11/30/17 18:15 ANG	P7K0551
Methyl Ethyl Ketone (2-Butanone)	BRL	mg/kg dry	0.11	0.00052	1	8260B	11/30/17 18:15 ANG	P7K0551
Methyi Isobutyi Ketone	BRL	mg/kg dry	0.057	0.00049	1	8260B	11/30/17 18:15 ANG	P7K0551
Methylene Chloride	BRL	mg/kg dry	0.011	0.00032	1	8260B	11/30/17 18:15 ANG	P7K0551
Methyi-tert-Butyl Ether	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 18:15 ANG	P7K0551
Naphthalene	BRL	mg/kg dry	0.011	0.00018	1	8260B	11/30/17 18:15 ANG	P7K0551
n-Butylbenzene	BRL	mg/kg dry	0.0057	0.00029	14	8260B	11/30/17 18:15 ANG	P7K0551
n-Propylbenzene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 18:15 ANG	P7K0551
o-Xylene	BRL	mg/kg dry	0.0057	0.00024	1	8260B	11/30/17 18:15 ANG	P7K0551
sec-Butylbenzene	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 18:15 ANG	P7K0551
Styrene	BRL	mg/kg dry	0.0057	0.00035	1	8260B	11/30/17 18:15 ANG	P7K0551
tert-Butylbenzene	BRL	mg/kg dry	0.0057	0.00019	1	8260B	11/30/17 18:15 ANG	P7K0551
Tetrachloroethylene	BRL	mg/kg dry	0.0057	0.00027	1	8260B	11/30/17 18:15 ANG	P7K0551
Toluene	BRL	mg/kg dry	0.0057	0.00033	1	8260B	11/30/17 18:15 ANG	P7K0551
trans-1,2-Dichloroethylene	BRL	mg/kg dry	0.0057	0.00034	1	8260B	11/30/17 18:15 ANG	P7K0551
trans-1,3-Dichloropropylene	BRL	mg/kg dry	0.0057	0.00030	1	8260B	11/30/17 18:15 ANG	P7K0551
Trichloroethylene	BRL	mg/kg dry	0.0057	0.00037	8	8260B	11/30/17 18:15 ANG	
Trichlorofluoromethane	BRI.	mg/kg dry	0.0057	0.00037	ः 1	8260B	11/30/17 18:15 ANG	P7K0551 P7K0551
Vinyl acetate	BRL	mg/kg dry	0.029	0.00079	1	8260B		
Vinyl chloride	BRL	mg/kg dry	0.0057	0.00028	1	8260B	11/30/17 18:15 ANG	P7K0551
Xylenes, total	BRL	mg/kg dry	0.017	0.0011	1	8260B	11/30/17 18:15 ANG	P7K0551
	· · · · · · · · · · · · · · · · · · ·		Surrogeta	0.0011		Booth	11/30/17 18:15 ANG	P7K0551

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	97 %	70-130
Dibromofluoromethane	99 %	84-123
Toluene-d8	88 %	76-129

Prism Work Order: 7110418

Time Submitted: 11/21/2017 9:15:00AM

Project: Zion Ave. Site

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7K0551 - 5035	· <u> </u>			_						
Blank (P7K0551-BLK1)				Prepared	& Analyze	d: 11/30/1	— <u>—</u> — 7			
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,1-Trichlorcethane	BRL	0.0050	mg/kg wet							
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethane	BRL	0.0050	mg/kg wet							
1,1-Dichloroethylene	BRL	0.0050	ing/kg wet							
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet							
1,2,3-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet							
1,2,4-Trichlorobenzene	BRL	0.0050	mg/kg wet							
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet							
1,2-Dibromoethane	BRL	0.0050	mg/kg wet							
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet							
1,2-Dichloroethane	BRL	0.0050	mg/kg wet							
1,2-Dichloropropane	BRL	0.0050	mg/kg wet							
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet							
,3-Dichlorobenzene	BRL	0.0050	mg/kg wet							
,3-Dichloropropane	BRL	0.0050	mg/kg wet							
I,4-Dichlorobenzene	BRL	0.0050	mg/kg wet							
2,2-Dichloropropane	BRL	0.0050	mg/kg wet							
-Chlorotoluene	BRL	0.0050	-							
-Chiorotoluene	BRL	0.0050	mg/kg wet							
-isopropyitoluene	BRL	0.0050	mg/kg wet							
Acetone	BRL	0.050	mg/kg wet							
Benzene	BRL	0.0030	mg/kg wet							
Iromobenzene	BRL	0.0050	mg/kg wet							
iromochloromethane	BRL		mg/kg wet							
romodichioromethane	BRL	0.0050	mg/kg wet							
romoform		0.0050	mg/kg wet							
romomethane	BRL	0.0050	mg/kg wet							
arbon Tetrachloride	BRL	0.010	mg/kg wet							
chiorobenzene	BRL	0.0050	mg/kg wet							
hloroethane	BRL	0.0050	mg/kg wet							
	BRL	0.010	mg/kg wet							
hloroform	BRL	0.0050	mg/kg wet							
	BRL	0.0050	mg/kg wet							
s-1,2-Dichloroethylene	BRL		mg/kg wet							
s-1,3-Dichloropropylene	BRL		mg/kg wet							
bromochloromethane	BRL	0.0050	mg/kg wet							
chlorodifluoromethane	BRL	0.0050	mg/kg wet							
hylbenzene	BRL		mg/kg wet							
opropyl Ether	BRL	0.0050	mg/kg wet							
opropylbenzene (Cumene)	BRL	0.0050	mg/kg wet							
p-Xylenes	BRL	0.010	mg/kg wet							
ethyl Butyl Ketone (2-Hexanone)	BRL	0.050	mg/kg wet							
ethyl Ethyl Ketone (2-Butanone)	BRL	0.10	mg/kg wet							
ethyl Isobutyl Ketone	BRL	0.050	mg/kg wet							

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Fuli-Service Analytical & Environmental Solutions

Project: Zion Ave. Site

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7K0551 - 5035										
Blank (P7K0551-BLK1)				Prepared	& Analyze	d: 11/30/	17			
Methylene Chloride	BRL	0.010	mg/kg wet		<u></u>					
Methyl-tert-Butyl Ether	BRL	0.010	mg/kg wet							
Naphthalene	BRL	0.010	mg/kg wei							
n-Butylbenzene	BRL	0.0050	mg/kg wet							
n-Propylbenzene	BRL	0.0050	mg/kg wet							
o-Xylene	BRL	0.0050	ing/kg wet							
sec-Butylbenzene	BRL	0.0050	mg/kg wet							
Styrene	BRL	0.0050	mg/kg wet							
tert-Butylbenzene	BRL	0.0050	mg/kg wet							
Tetrachloroethylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
trans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
trans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Trichloroethylene	BRL	0.0050	mg/kg wet							
Trichlorofluoromethane	BRL	0.0050	mg/kg wet							
√inyl acetate	BRL	0.025	mg/kg wet							
/inyl chloride	BRL	0.0050	mg/kg wet							
Kylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	48.9	0.010		50.00						
Surrogate: Dibromofluoromethane	47.4		ug/L	50.00		98	70-130			
Surrogate: Toluene-d8	45.0		ug/L ug/L	50.00 50.00		95 00	84-123			
.CS (P7K0551-BS1)	10.0		•			90	76-129			
,1,1,2-Tetrachloroethane	0.0514	0.0050	mg/kg wet	Prepared 8	k Analyzed	103	72-115			
,1,1-Trichloroethane	0.0522	0.0050	mg/kg wet			103	67-131			
,1,2,2-Tetrachloroethane	0.0403	0.0050	mg/kg wet			81	56-126			
,1,2-Trichloroethane	0.0466	0.0050	mg/kg wet			93	70-133			
1-Dichloroethane	0.0514	0.0050	mg/kg wet			103	70-133			
1-Dichloroethylene	0.0556	0.0050	mg/kg wet			105				
,1-Dichloropropylene	0.0559	0.0050	mg/kg wet			112	67-149			
2,3-Trichlorobenzene	0.0460	0.0050	mg/kg wet			92	71-130			
2,3-Trichloropropane	0.0407	0.0050	mg/kg wet			9 <u>2</u> 81	68-130			
2,4-Trichlorobenzene	0.0461	0.0050	mg/kg wet			92	60-137			
2,4-Trimethylbenzene	0.0445	0.0050	mg/kg wet			32 89	66-125			
2-Dibromoethane	0.0475	0.0050	mg/kg wet			95	69-129			
2-Dichlorobenzene	0.0442	0.0050	mg/kg wet			90 88	70-132			
2-Dichloroethane	0.0492	0.0050	mg/kg wet				72-123			
2-Dichloropropane	0.0516		mg/kg wet			98 102	68-128 73 430			
3,5-Trimethylbenzene	0.0400		mg/kg wet			103	73-130			
3-Dichlorobenzene	0.0438		mg/kg wet			80 80	69-128			
3-Dichloropropane	0.0468		mg/kg wet			86	71-120			
4-Dichlorobenzene	0.0437		mg/kg wet			94	75-124			
2-Dichloropropane	0.0535					87	71-123			
Chlorotoluene	0.0430		mg/kg wet			107	50-142			
Chlorotoluene	0.0430		mg/kg wet			86	67-124			
sopropyltoluene	0.0443		mg/kg wet			89	71-126			
etone	0.100	0.050	mg/kg wet	0.05000		86	68-129			

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7K0551 - 5035										
LCS (P7K0551-BS1)				Prepared	& Analyze	d: 11/30/1	7			
Benzene	0.0520	0.0030	mg/kg wet	-		104	74-127	·········		_
Bromobenzene	0.0420	0.0050	mg/kg wet			84	73-125			
Bromochloromethane	0.0526	0.0050	mg/kg wet	0.05000		105	72-134			
3romodichloromethane	0.0555	0.0050	mg/kg wet	0.05000		111	75-122			
Bromoform	0.0509	0.0050	mg/kg wet	0.05000		102	66-135			
Bromomethane	0.0443	0.010	mg/kg wet	0.05000		89	20-180			
Carbon Tetrachloride	0.0550	0.0050	mg/kg wet	0.05000		110	64-143			
Chlorobenzene	0.0478	0.0050	mg/kg wet	0.05000		96	74-118			
hloroethane	0.0418	0.010	mg/kg wet	0.05000		84	33-149			
Chloroform	0.0545	0.0050	mg/kg wet	0.05000		109	73-127			
hloromethane	0.0561	0.0050	mg/kg wet	0.05000		112	45-143			
is-1,2-Dichloroethylene	0.0531	0.0050	mg/kg wet	0.05000		106	76-134			
is-1,3-Dichloropropylene	0.0528	0.0050	mg/kg wet	0.05000		106	71-125			
ibromochloromethane	0.0516	0.0050	mg/kg wet	0.05000		103	73-122			
lchlorodifluoromethane	0.0778	0.0050	mg/kg wet			156	26-146			ų
thylbenzene	0.0475	0.0050	mg/kg wet	0.05000		95	74-128			Ļ
opropyl Ether	0.0492	0.0050	mg/kg wet			98	59-159			
opropylbenzene (Cumene)	0.0431	0.0050	mg/kg wet	0.05000		86	68-126			
,p-Xylenes	0.105	0.010	mg/kg wet	0.1000		105	75-124			
ethyl Butyl Ketone (2-Hexanone)	0.0407	0.050	mg/kg wet	0.05000		81	61-157			
ethyl Ethyl Ketone (2-Butanone)	0.0430	0.10	mg/kg wet	0.05000		86	63-149			
ethyi isobutyi Ketone	0.0459	0.050	mg/kg wet			92	57-162			
ethylene Chloride	0.0506	0.010	mg/kg wet	0.05000		101	74-129			
ethyl-tert-Butyl Ether	0.0525	0.010	mg/kg wet			105	70-130			
aphthalene	0.0418	0.010	mg/kg wet			84	57-157			
Butylbenzene	0.0424	0.0050	mg/kg wet	0.05000		85	65-135			
Propylbenzene	0.0433	0.0050	mg/kg wet			87	67-130			
Xylene	0.0480	0.0050	mg/kg wet			96	74-126			
c-Butylbenzene	0.0433	0.0050	mg/kg wet			87	66-131			
yrene	0.0491	0.0050	mg/kg wet			98	77-121			
t-Butylbenzene	0.0431	0.0050	mg/kg wet			86	67-132			
trachloroethylene	0.0530	0.0050	mg/kg wet			106	68-132			
luene	0.0522	0.0050	mg/kg wet			104	71-129			
ns-1,2-Dichloroethylene	0.0553	0.0050		0.05000		111				
ns-1,3-Dichloropropylene	0.0532	0.0050	mg/kg wet			106	73-132			
chioroethylene	0.0538	0.0050	mg/kg wet			108	68-123			
chlorofluoromethane	0.0421		mg/kg wet				75-133			
nyl acetate	0.0528		mg/kg wet			84 106	44-146 85 161			
y chloride	0.0575		mg/kg wet			106	85-161			
lenes, total	0.153		-	0.1500		115	48-147			
πogate: 4-Bromofluorobenzene	49.2	0.010				102	74-126			
rrogate: Dibromofluoromethane			ug/L	50.00		98	70-130			
rrogate: Toluene-d8	49.6 45.5		ug/L ug/L	50.00 50.00		99 91	84-123 76-129			

Full-Service Analytical & Environmental Solutions

Project: Zion Ave. Site

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7K0551 - 5035										
LCS Dup (P7K0551-BSD1)				Prepared	& Analvze	d: 11/30/*	17			
1,1,1,2-Tetrachloroethane	0.0517	0.0050	mg/kg wet	· · ·		103	72-115	0.6	20	
1,1,1-Trichloroethane	0.0517	0.0050	mg/kg wet			103	67-131	0.9	20	
1,1,2,2-Tetrachloroethane	0.0424	0.0050	mg/kg wet			85	56-126	5	20	
1,1,2-Trichloroethane	0.0486	0.0050	mg/kg wet	0.05000		97	70-133	4	20	
1,1-Dichloroethane	0.0519	0.0050	mg/kg wet	0.05000		104	74-127	0.9	20	
1,1-Dichloroethylene	0.0550	0.0050	mg/kg wet	0.05000		110	67-149	1	20	
1,1-Dichloropropylene	0.0549	0.0050	mg/kg wet	0.05000		110	71-130	2	20	
1,2,3-Trichlorobenzene	0.0456	0.0050	mg/kg wet	0.05000		91	68-130	0.8	20	
1,2,3-Trichloropropane	0.0425	0.0050	mg/kg wet	0.05000		85	60-137	4	20	
1,2,4-Trichlorobenzene	0.0457	0.0050	mg/kg wet	0.05000		91	66-125	0.9	20	
1,2,4-Trimethylbanzene	0.0449	0.0050	mg/kg wet	0.05000		90	69-129	0.9	20	
1,2-Dibromoethane	0.0493	0.0050	mg/kg wet	0.05000		99	70-132	4	20	
1,2-Dichlorobenzene	0.0448	0.0050	mg/kg wet	0.05000		90	72-123	1	20	
1,2-Dichloroathane	0.0511	0.0050	mg/kg wet	0.05000		102	68-128	4	20	
1,2-Dichloropropane	0.0518	0.0050	mg/kg wet	0.05000		104	73-130	0.3	20	
1,3,5-Trimethylbenzene	0.0404	0.0050	mg/kg wet	0.05000		81	6 9 -128	1	20	
1,3-Dichlorobenzene	0.0442	0.0050	mg/kg wet	0.05000		88	71-120	1	20	
1,3-Dichloropropane	0.0485	0.0050	mg/kg wet	0.05000		97	75-124	3	20	
,4-Dichlorobenzene	0.0444	0.0050	mg/kg wet	0.05000		89	71-123	1	20	
2,2-Dichloropropane	0.0527	0.0050	mg/kg wet	0.05000		105	50-142	1	20	
2-Chlorotoluene	0.0436	0.0050	mg/kg wet	0.05000		87	67-124	1	20	
I-Chlorotoluene	0.0448	0.0050	mg/kg wet	0.05000		90	71-126	1	20	
l-Isopropyitoluene	0.0425	0.0050	mg/kg wet	0.05000		85	68-129	0.8	20	
Acetone	0.100	0.050	mg/kg wet	0.1000		100	29-198	0.05	20	
Benzene	0.0521	0.0030	mg/kg wet	0.05000		104	74-127	0.2	20	
Bromobenzene	0.0429	0.0050	mg/kg wet	0.05000		86	73-125	2	20	
Bromochioromethane	0.0533	0.0050	mg/kg wet	0.05000		107	72-134	1	20	
Iromodichloromethane	0.0560	0.0050	mg/kg wet	0.05000		112	75-122	0.8	20	
iromoform	0.0519	0.0050		0.05000		104	66-135	2	20	
Iromomethane	0.0425	0.010	- +	0.05000		85	20-180	4	20	
arbon Tetrachloride	0.0560	0.0050	- +	0.05000		112	64-143	2	20	
chlorobenzene	0.0480	0.0050	mg/kg wet	0.05000		96	74-118	0.4	20	
hioroethane	0.0426	0.010	mg/kg wet	0.05000		85	33-149	2	20	
hloroform	0.0552	0.0050	mg/kg wet	0.05000		110	73-127	1	20	
hloromethane	0.0486	0.0050	mg/kg wet			97	45-143	14	20	
ls-1,2-Dichloroethylene	0.0532	0.0050	mg/kg wet			106	76-134	0.2	20	
s-1,3-Dichloropropylene	0.0537	0.0050	mg/kg wet			107	71-125	2	20	
ibromochloromethane	0.0532	0.0050	mg/kg wet			106	73-122	3	20	
ichlorodifluoromethane	0.0733	0.0050	mg/kg wet			147	26-146	6	20	
thylbenzene	0.0472	0.0050	mg/kg wet			94	74-128	0.7	20	
opropyl Ether	0.0504	0.0050	mg/kg wet			101	59-159	2	20	
opropylbenzene (Cumene)	0.0433	0.0050	mg/kg wet			87	68-126	0.6	20	
,p-Xylenes	0.105	0.010	- •	0.1000		105	75-124	0.02	20	
ethyl Butyl Ketone (2-Hexanone)	0.0426	0.050	mg/kg wet			85	61-157	5	20	
ethyl Ethyl Ketone (2-Butanone)	0.0442	0.10	mg/kg wet			88	63-149	3	20	
ethyl isobutyl Ketone	0.0474	0.050	mg/kg wet			95	57-162	3	20	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7K0551 - 5035										
LCS Dup (P7K0551-BSD1)				Prepared	& Analyze	d: 11/30/1	7			
Methylene Chloride	0.0512	0.010	mg/kg wet	0.05000		102	74-129	1	20	
Methyl-tert-Butyl Ether	0.0542	0.010	mg/kg wet	0.05000		108	70-130	3	20	
Naphthalene	0.0421	0.010	mg/kg wet	0.05000		84	57-157	0.9	20	
n-Butylbenzene	0.0421	0.0050	mg/kg wet	0.05000		84	65-135	0.7	20	
n-Propylbenzene	0.0434	0.0050	mg/kg wet	0.05000		87	67-130	0.2	20	
o-Xylene	0.0478	0.0050	mg/kg wet	0.05000		96	74-126	0.5	20	
sec-Butylbenzene	0.0434	0.0050	mg/kg wet	0.05000		87	66-131	0.2	20	
Styrene	0.0495	0.0050	mg/kg wet	0.05000		99	77-121	0.8	20	
ert-Butylbenzene	0.0430	0.0050	mg/kg wet	0.05000		86	67-132	0.2	20	
Tetrachloroethylene	0.0520	0.0050	mg/kg wet	0.05000		104	68-130	2	20	
Toluene	0.0522	0.0050	mg/kg wet			104	71-129	0.08	20	
rans-1,2-Dichloroethylene	0.0547	0.0050	mg/kg wet			109	73-132	1	20	
rans-1,3-Dichloropropyiene	0.0542	0.0050	mg/kg wet			108	68-123	2	20	
Trichloroethylene	0.0536	0.0050	mg/kg wet			107	75-133	0.4	20	
Trichlorofluoromethane	0.0411	0.0050	mg/kg wet			82	44-146	2	20	
Vinyl acetate	0.0513	0.025	mg/kg wet	0.05000		103	85-161	3	20	
/inyl chloride	0.0550	0.0050	mg/kg wet	0.05000		110	48-147	4	20	
Kylenes, total	0.153	0.015	mg/kg wet	0.1500		102	74-126	0.1	20	
Sunogate: 4-Bromofluorobenzene	48.5		ug/L	50.00		97	70-130	0.1	20	
Surrogete: Dibromofluoromethane	49.2		ug/L	50.00		98	84-123			
Surrogate: Toluene-d8	46.1		ug/L	50.00		90 92	76-129			
Batch P7L0031 - 5035 Blank (P7L0031-BLK1)				Prepared (& Analyzed	d: 12/01/1	7	· · ·		
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,1-Trichloroethane	BRL	0.0050	mg/kg wet							
1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet							
1,2-Trichloroethane	BRL	0.0050	mg/kg wet							
1-Dichloroethane	BRL	0.0050	mg/kg wet							
,1-Dichloroethylene	BRL	0.0050	mg/kg wet							
,1-Dichloropropylene	BRL	0.0050	mg/kg wet							
,2,3-Trichlorobenzene	BRL	0.0050	mg/kg wet							
,2,3-Trichloropropane	BRL	0.0050	mg/kg wet							
,2,4-Trichlorobenzene	BRL	0.0050	mg/kg wet							
,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet							
,2-Dibromoethane	BRL	0.0050	mg/kg wet							
,2-Dichlorobenzene	BRL	0.0050								
,2-Dichloroethane	BRL	0.0050	mg/kg wet							
2-Dichloropropane			mg/kg wet							
	BRL BRL	0.0050	mg/kg wet							
,3,5-Trimethylbenzene		0.0050	mg/kg wet							
3-Dichlorobenzene	BRL	0.0050	mg/kg wet							
3-Dichloropropane	BRL	0.0050	mg/kg wet							
4-Dichlorobenzene	BRL	0.0050	mg/kg wet							
2-Dichloropropane	BRL	0.0050	mg/kg wet							
Chlorotoluene	BRL	0.0050	mg/kg wet							

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7L0031 - 5035										
Blank (P7L0031-BLK1)				Prepared	& Analyze	d: 12/01/1	7			
4-Isopropyitoluene	BRL	0.0050	mg/kg wet				<u> </u>			
Acetone	BRL	0.050	mg/kg wet							
Benzene	BRL	0.0030	mg/kg wet							
Bromobenzene	BRL	0.0050	mg/kg wet							
Bromochloromethane	BRL	0.0050	mg/kg wet							
Bromodichloromethane	BRL	0.0050	mg/kg wet							
Bromoform	BRL	0.0050	mg/kg wet							
Bromomethane	BRL	0.010	mg/kg wet							
Carbon Tetrachloride	BRL	0.0050	mg/kg wet							
Chlorobenzene	BRL	0.0050	mg/kg wet							
Chloroethane	BRL	0.010	mg/kg wet							
Chloroform	BRL	0.0050	mg/kg wet							
Chloromethane	BRL	0.0050	mg/kg wet							
is-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
is-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
Dibromochloromethane	BRL	0.0050	mg/kg wet							
Dichlorodifiuoromethane	BRL	0.0050	mg/kg wet							
thylbenzene	BRL	0.0050	mg/kg wet							
sopropyl Ether	BRL	0.0050	mg/kg wet							
sopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet							
1,p-Xylenes	BRL	0.010	mg/kg wet							
lethyl Butyl Ketone (2-Hexanone)	BRL	0.050	mg/kg wet							
lethyl Ethyl Ketone (2-Butanone)	BRL	0.10	mg/kg wet							
lethyl Isobutyl Ketone	BRL	0.050	mg/kg wet							
lethylene Chloride	BRL	0.010	mg/kg wet							
ethyi-tert-Butyl Ether	BRL	0.010	mg/kg wet							
aphthalene	BRL	0.010	mg/kg wet							
Butylbenzene	BRL	0.0050	mg/kg wet							
Propylbenzene	BRL	0.0050	mg/kg wet							
Xylene	BRL	0.0050	mg/kg wet							
c-Butylbenzene	BRL	0.0050	mg/kg wet							
yrene	BRL	0.0050	mg/kg wet							
rt-Butylbenzene	BRL	0.0050	mg/kg wet							
strachloroethylene	BRL	0.0050	mg/kg wet							
bluene	BRL	0.0050	mg/kg wet							
ns-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet							
Ins-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet							
ichloroethylene	BRL	0.0050	mg/kg wet							
chlorofluoromethane	BRL		mg/kg wet							
nyl acetate	BRL		mg/kg wet							
nyí chloride	BRL		mg/kg wet							
lenes, total	BRL		mg/kg wet							
rrogate: 4-Bromofluorobenzene	49.3	_	ug/L	50.00		99	70 420			
mogate: Dibromofluoromethane	50.0		ug/L	50.00			70-130			
rrogate: Toluene-d8	50.1		ug/L	50.00			84-123 76-129			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7L0031 - 5035										
LCS (P7L0031-BS1)				Prepared	& Analyzed	d: 12/01/1	7			
1,1,1,2-Tetrachloroethane	0.0477	0.0050	mg/kg wet			95	72-115			
1,1,1-Trichloroethane	0.0670	0.0050	mg/kg wet			134	67-131			L1
1,1,2,2-Tetrachioroethane	0.0333	0.0050	mg/kg wet			67	56-126			
1,1,2-Trichloroethane	0.0448	0.0050	mg/kg wet			90	70-133			
1,1-Dichloroethane	0.0551	0.0050	mg/kg wet	0.05000		110	74-127			
1,1-Dichloroethylene	0.0596	0.0050	mg/kg wet	0.05000		119	67-149			
1,1-Dichloropropylene	0.0618	0.0050	mg/kg wet			124	71-130			
1,2,3-Trichlorobenzene	0.0410	0.0050	mg/kg wet	0.05000		82	68-130			
1,2,3-Trichloropropane	0.0373	0.0050	mg/kg wet	0.05000		75	60-137			
1,2,4-Trichlorobenzene	0.0415	0.0050	mg/kg wet	0.05000		83	66-125			
1,2,4-Trimethylbanzene	0.0396	0.0050	mg/kg wet	0.05000		79	69-129			
1,2-Dibromoethane	0.0445	0.0050	mg/kg wet			89	70-132			
1,2-Dichlorobenzene	0.0387	0.0050	mg/kg wet	0.05000		77	72-123			
1,2-Dichloroethane	0.0646	0.0050	mg/kg wet	0.05000		129	68-128			L1
1,2-Dichloropropane	0.0535	0.0050	mg/kg wet	0.05000		107	73-130			E.
1,3,5-Trimethylbenzene	0.0386	0.0050	mg/kg wet			Π	69-128			
1,3-Dichlorobenzene	0.0384	0.0050	mg/kg wet	0.05000		77	71-120			
,3-Dichloropropane	0.0437	0.0050	mg/kg wet	0.05000		87	75-124			
,4-Dichlorobenzene	0.0390	0.0050	mg/kg wet			78	71-123			
2,2-Dichloropropane	0.0660	0.0050	mg/kg wet			132	50-142			
2-Chlorotoluene	0.0377	0.0050	mg/kg wet	0.05000		75	67-124			
-Chiorotoluene	0.0374	0.0050	mg/kg wet			75	71-126			
Isopropyitoluene	0.0402	0.0050	mg/kg wet	0.05000		80	68-129			
cetone	0.138	0.050	mg/kg wet	0.1000		138	29-198			
lenzene	0.0547	0.0030	mg/kg wet	0.05000		109	74-127			
Iromobenzene	0.0350	0.0050	mg/kg wet			70	73-125			L
iromochloromethane	0.0534	0.0050	mg/kg wet			107	72-134			-
romodichloromethane	0.0643	0.0050	mg/kg wet	0.05000		129	75-122			L1
iromoform	0.0474	0.0050	mg/kg wet			95	66-135			E1
romomethane	0.0592	0.010	mg/kg wet			118	20-180			
arbon Tetrachloride	0.0711	0.0050	mg/kg wet			142	64-143			
hlorobenzene	0.0447	0.0050	mg/kg wet			89	74-118			
hloroethane	0.0398	0.010	mg/kg wet			80	33-149			
hloroform	0.0634	0.0050	mg/kg wet			127	73-127			
hloromethane	0.0706	0.0050	mg/kg wet			141	45-143			
s-1,2-Dichloroethylene	0.0577	0.0050	mg/kg wet			115	76-134			
s-1,3-Dichloropropylene	0.0594	0.0050	mg/kg wet			119	71-125			
ibromochloromethane	0.0467	0.0050	mg/kg wet			93	73-122			
ichlorodifiuoromethane	0.0750	0.0050	mg/kg wet			150	26-146			L1
hylbenzene	0.0459	0.0050	mg/kg wet			92	74-128			L1
opropyl Ether	0.0575		rng/kg wet			115	59-159			
opropylbenzene (Cumene)	0.0374		mg/kg wet			75	68-126			
,p-Xylenes	0.0938			0.1000		94	75-124			
sthyl Butyl Ketone (2-Hexanone)	0.0500		mg/kg wet			100	61-157			
ethyl Ethyl Ketone (2-Butanone)	0.0580		mg/kg wet			116	63-149			
ethyl Isobutyl Ketone	0.0621		mg/kg wet			124	57-162			J

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatlle Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit		Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch P7L0031 - 5035											
LCS (P7L0031-BS1)				Prepared	& Analyze	d: 12/01/	17				
Methylene Chloride	0.0548	0.010	mg/kg wet		a raing 20	110	74-129			-	_
Methyl-tert-Butyl Ether	0.0588	0.010	mg/kg wet			118	70-130				
Naphthaiene	0.0407	0.010	mg/kg wet			81	57-157				
n-Butylbenzene	0.0407	0.0050	mg/kg wet			81	65-135				
n-Propylbenzene	0.0369	0.0050	mg/kg wet			74	67-130				
o-Xylene	0.0476	0.0050	mg/kg wet			95	74-126				
sec-Butylbenzena	0.0385	0.0050	mg/kg wet			77	66-131				
Styrene	0.0460	0.0050	mg/kg wet			92	77-121				
tert-Butylbenzene	0.0392	0.0050	mg/kg wet			78	67-132				
Tetrachloroethylene	0.0596	0.0050	mg/kg wet	0.05000		119	68-130				
Toluene	0.0557	0.0050	mg/kg wet			111	71-129				
trans-1,2-Dichloroethylene	0.0585	0.0050	mg/kg wet			117	73-132				
trans-1,3-Dichloropropyiene	0.0625	0.0050	mg/kg wet			125	68-123				L1
Trichloroethylene	0.0608	0.0050	mg/kg wet			122	75-133				L.I.
Trichlorofluoromethane	0.0668	0.0050	mg/kg wet			134	44-146				
Vinyl acetate	0.0564	0.025	mg/kg wet			113	85-161				
Vinyl chloride	0.0690	0.0050	mg/kg wet	0.05000		138	48-147				
Kylenes, total	0.141	0.015	mg/kg wet	0.1500		94	74-126				
Surrogate: 4-Bromofluorobenzene	45,9		ug/L	50.00		92	70-130				
Surrogate: Dibromofluoromethene	49.2		ug/L	50.00		98 98	84-123				
Surrogete: Toluene-d8	50.4		ug/L	50.00		101	76-129				
CS Dup (P7L0031-BSD1)			- 1	Prepared 8	k Analyzed						
1,1,2-Tetrachloroethane	0.0439	0.0050	mg/kg wet	0.05000		88	72-115	8	20		-
,1,1-Trichloroethane	0.0607	0.0050	mg/kg wet			121	67-131	10	20		
,1,2,2-Tetrachloroethane	0.0319	0.0050	mg/kg wet	0.05000		64	56-126	4	20		
,1,2-Trichloroethane	0.0379	0.0050	mg/kg wet	0.05000		76	70-133	17	20		
1-Dichloroethane	0.0502	0.0050	mg/kg wet	0.05000		100	74-127	9	20		
,1-Dichloroethylene	0.0549	0.0050	mg/kg wet	0.05000		110	67-149	8	20		
,1-Dichloropropylene	0.0563	0.0050	mg/kg wet	0.05000		113	71-130	9	20		
,2,3-Trichlorobenzene	0.0397	0.0050	mg/kg wet	0.05000		79	68-130	3	20		
,2,3-Trichloropropane	0.0351	0.0050	mg/kg wet			70	60-137	6	20		
2,4-Trichlorobenzene	0.0396	0.0050	mg/kg wet	0.05000		79	66-125	5	20		
2,4-Trimethylbenzene	0.0385	0.0050	mg/kg wet	0.05000		77	69-129	3	20		
2-Dibromoethane	0.0427	0.0050		0.05000		85	70-132	4	20		
2-Dichlorobenzene	0.0369	0.0050	mg/kg wet	0.05000		74	72-123	5	20		
2-Dichloroethane	0.0586	0.0050	mg/kg wet			117	68-128	10	20		
2-Dichloropropane	0.0493	0.0050	mg/kg wet			99	73-130	8	20		
3,5-Trimethylbenzene	0.0362	0.0050	mg/kg wet			72	69-128	6	20		
3-Dichlorobenzene	0.0364	0.0050	mg/kg wet			73	71-120	5	20		
3-Dichloropropane	0.0411		mg/kg wet			82	75-124	6	20		
4-Dichlorobenzene	0.0367	0.0050	mg/kg wet			73	71-123	6	20 20		
2-Dichloropropane	0.0598		mg/kg wet			120	50-142	10			
Chlorotoluene	0.0342	0.0050	mg/kg wet			68	67-124	10	20		
Chlorotoluene	0.0367		mg/kg wet			73	71-124	2	20		
Isopropyitoluene	0.0366		mg/kg wet			73	68-129	2 9	20		
etone	0.120		mg/kg wet			120	29-129	9 14	20 20		

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7L0031 - 5035										
LCS Dup (P7L0031-BSD1)			-	Prepared	& Analyze	d: 12/01/1	7			
Benzene	0.0496	0.0030	mg/kg wet	0.05000		99	74-127	10	20	_
Bromobenzene	0.0331	0.0050	mg/kg wet	0.05000		66	73-125	6	20	
Bromochioromethane	0.0503	0.0050	mg/kg wet	0.05000		101	72-134	6	20	
Bromodichloromethane	0.0592	0.0050	mg/kg wet	0.05000		118	75-122	8	20	
Bromoform	0.0458	0.0050	mg/kg wet	0.05000		92	66-135	3	20	
Bromomethane	0.0589	0.010	mg/kg wet	0.05000		118	20-180	0.6	20	
Carbon Tetrachloride	0.0667	0.0050	mg/kg wet	0.05000		133	64-143	6	20	
Chlorobenzene	0.0409	0.0050	mg/kg wet	0.05000		82	74-118	9	20	
Chloroethane	0.0396	0.010	mg/kg wet	0.05000		79	33-149	0.3	20	
Chloroform	0.0590	0.0050	mg/kg wet	0.05000		118	73-127	7	20	
Chloromethane	0.0659	0.0050	mg/kg wet	0.05000		132	45-143	7	20	
zis-1,2-Dichloroethylene	0.0548	0.0050	mg/kg wet	0.05000		110	76-134	5	20	
sis-1,3-Dichloropropylene	0.0542	0.0050	mg/kg wet	0.05000		108	71-125	9	20	
Dibromochloromethane	0.0447	0.0050	mg/kg wet	0.05000		89	73-122	4	20	
Dichlorodifluoromethane	0.0713	0.0050	mg/kg wet	0.05000		143	26-146	5	20	
Ethylbenzene	0.0430	0.0050	mg/kg wet	0.05000		86	74-128	7	20	
sopropyl Ether	0.0546	0.0050	mg/kg wet	0.05000		109	59-159	5	20	
sopropylbenzene (Cumene)	0.0347	0.0050	mg/kg wet	0.05000		69	68-126	7	20	
n,p-Xylenes	0.0876	0.010	mg/kg wet	0.1000		88	75-124	7	20	
lethyl Butyl Ketone (2-Hexanone)	0.0464	0.050	mg/kg wet	0.05000		93	61-157	7	20	
lethyl Ethyl Ketone (2-Butanone)	0.0521	0.10	mg/kg wet	0.05000		104	63-149	11	20	
lethyl Isobutyl Ketone	0.0557	0.050	mg/kg wet	0.05000		111	57-162	11	20	
ethylene Chloride	0.0497	0.010	mg/kg wet	0.05000		99	74-129	10	20	
lethyl-tert-Butyl Ether	0.0538	0.010	mg/kg wet	0.05000		108	70-130	9	20	
laphthalene	0.0385	0.010	mg/kg wet	0.05000		77	57-157	6	20	
-Butylbenzene	0.0371	0.0050	mg/kg wet	0.05000		74	65-135	9	20	
Propylbenzene	0.0351	0.0050	mg/kg wet	0.05000		70	67-130	5	20	
-Xylene	0.0442	0.0050	mg/kg wet	0.05000		88	74-126	7	20	
ec-Butylbenzene	0.0361	0.0050	mg/kg wet	0.05000		72	66-131	7	20	
tyrene	0.0435	0.0050	mg/kg wet	0.05000		87	77-121	6	20	
nt-Butylbenzene	0.0374	0.0050	mg/kg wet	0.05000		75	67-132	5	20	
etrachioroethylene	0.0544	0.0050	mg/kg wet	0.05000		109	68-130	9	20	
oluene	0.0513	0.0050	mg/kg wet			103	71-129	8	20	
ans-1,2-Dichloroethylene	0.0538	0.0050	mg/kg wet			108	73-132	8	20	
ans-1,3-Dichloropropylene	0.0583	0.0050	mg/kg wet	0.05000		117	68-123	7	20	
ichloroethylene	0.0539	0.0050	mg/kg wet			108	75-133	12	20	
ichlorofluoromethane	0.0641	0.0050	mg/kg wet			128	44-146	4	20	
nyi acetate	0.0510	0.025	mg/kg wet			102	85-161	10	20	
nyl chloride	0.0659		mg/kg wet			132	48-147	5	20	
/lenes, total	0.132	0.015	mg/kg wet	0.1500		88	74-126	7	20	
Irrogete: 4-Bromofluorobenzene	44.7		ug/L	50.00		89	70-130	•	20	
Irrogate: Dibromoftuoromethane	47.9		ug/L	50.00		96	70-130 84-123			
Irrogate: Toluene-d8	51.2		ug/L	50.00		90 102	64-123 76-129			

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

TCLP Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7L0102 - 5030B										
Blank (P7L0102-BLK1)				Prepared	& Analyze	d: 12/06/1	7			
1,1-Dichloroethylene	BRL	0.035	mg/L							
1,2-Dichloroethane	BRL	0.025	mg/L							
1,4-Dichlorobenzene	BRL	0.38	mg/L							
Benzene	BRL	0.025	mg/L							
Carbon Tetrachloride	BRL	0.025	mg/L							
Chlorobenzene	BRL	5.0	mg/L							
Chloroform	BRL	0.30	mg/L							
Methyl Ethyl Ketone (2-Butanone)	BRL	10	mg/L							
Fetrachloroethylene	BRL	0.035	mg/L							
Frichlorcethylene	BRL	0.025	mg/L							
/inyl chloride	BRL	0.020	mg/L							
Surrogate: 4-Bromofluorobenzene	43.2		ug/L	50.00		86	80-124			
Surrogate: Dibromofluoromethane	43.5		ug/L	50.00		87	75-129			
Surrogate: Toluene-d8	42.6		ug/L	50.00		85	77-123			
.CS (P7L0102-BS1)			-	Prepared a	& Analyzed	1: 12/06/1				
,1-Dichloroethylene	0.0215	0.035	mg/L	0.02000		108	70-154	·		_
,2-Dichloroethane	0.0198	0.025	mg/L	0.02000		99	68-131			
,4-Dichlorobenzene	0.0187	0.38	mg/L	0.02000		93	75-126			
enzene	0.0235	0.025	mg/L	0.02000		118	77-128			
arbon Tetrachloride	0.0201	0.025	mg/L.	0.02000		100	72-142			
hlorobenzene	0.0202	5.0	mg/L	0.02000		101	78-119			
chloroform	0.0210	0.30	mg/L	0.02000		105	77-130			
lethyl Ethyl Ketone (2-Butanone)	0.0224	10	mg/L	0.02000		112	71-134			
etrachloroethylene	0.0199	0.035	mg/L	0.02000		100	80-129			
richloroethylene	0.0231	0.025	mg/L	0.02000		115	77-133			
inyl chloride	0.0236	0.010	mg/L	0.02000		118	57-141			
urrogate: 4-Bromofluorobenzene	44.2		ug/L	50.00		88	80-124			
urrogate: Dibromofluoromethana	45.0		ug/L ug/L	50.00		90	60-124 75-129			
urrogate: Toluene-d8	43.7		ug/L	50.00		90 87	75-129 77-123			

Prism Work Order: 7110418 Time Submitted: 11/21/2017 9:15:00AM

Geoscience Group Attn: Torn Hassett 500-K Clanton Rd. Chariotte, NC 28217

TCLP Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P7L0102 - 5030B										
LCS Dup (P7L0102-BSD1)				Prepared	& Analyze	d: 12/06/1	7	· ·		
1,1-Dichloroethylene	0.0211	0.035	mg/L	0.02000		105	70-154	2	20	_
1,2-Dichloroethane	0.0200	0.025	mg/L	0.02000		100	68-131	1	20	
1,4-Dichlorobenzene	0.0185	0.38	mg/L	0.02000		93	75-126	0.7	20	
Benzene	0.0233	0.025	mg/L	0.02000		117	77-128	0.9	20	
Carbon Tetrachloride	0.0202	0.025	mg/L	0.02000		101	72-142	0.5	20	
Chlorobenzene	0.0204	5.0	mg/L	0.02000		102	78-119	1	20	
Chloroform	0.0208	0.30	mg/L	0.02000		104	77-130	0.6	20	
Methyl Ethyl Ketone (2-Butanone)	0.0230	10	mg/L	0.02000		115	71-134	2	20	
Tetrachloroethylene	0.0200	0.035	mg/L	0.02000		100	80-129	0.05	20	
Frichloraethylene	0.0230	0.025	mg/L	0.02000		115	77-133	0.4	20	
Vinyl chloride	0.0241	0.010	mg/L	0.02000		120	57-141	2	20	
Surrogate: 4-Bromofluorobenzene	45.0		ug/L	50.00		90	80-124	-		
Surrogate: Dibromofluoromethane	45.5		ug/L	50.00		91	75-129			
Surrogate: Toluene-d8	44.1		ug/L	50.00		88	77-123			

Full-Service Analytical & Environmental Solutions

Prism Work Order: 7110418

Time Submitted: 11/21/2017 9:15:00AM

Project: Zion Ave. Site

Geoscience Group Attn: Tom Hassett 500-K Clanton Rd. Charlotte, NC 28217

General Chemistry Parameters - Quality Control

Result	Reporting	nits	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
So	urce: 7110418-01	P	repared	& Analyze	1: 12/01/1	7	·		
73.8	0.100 % by			74.3			0.7	20	_
Sou	urce: 7110418-05	Pi	repared	& Analyze	1: 12/01/1	7			
78.5	0.100 % by			78.5			0.04	20	_
	50 73.8 50	Result Limit U Source: 7110418-01 O 73.8 0.100 % b 5 Source: 7110418-05 O	Result Limit Units Source: 7110418-01 P 73.8 0.100 % by Weight Source: Source: 7110418-05 P	Result Limit Units Level Source: 7110418-01 Prepared 73.8 0.100 % by Weight Source: 7110418-05 Prepared	Result Limit Units Level Result Source: 7110418-01 Prepared & Analyzed 73.8 0.100 % by Weight 74.3 Source: 7110418-05 Prepared & Analyzed	Result Limit Units Level Result %REC Source: 7110418-01 Prepared & Analyzed: 12/01/1 73.8 0.100 % by Weight 74.3 Source: 7110418-05 Prepared & Analyzed: 12/01/1	Result Limit Units Level Result %REC Limits Source: 7110418-01 Prepared & Analyzed: 12/01/17 73.8 0.100 % by Weight 74.3 Source: 7110418-05 Prepared & Analyzed: 12/01/17	Result Limit Units Level Result %REC Limits RPD Source: 7110418-01 Prepared & Analyzed: 12/01/17 0.7 73.8 0.100 % by Weight 74.3 0.7 Source: 7110418-05 Prepared & Analyzed: 12/01/17	Result Limit Units Level Result %REC Limits RPD Limit Source: 7110418-01 Prepared & Analyzed: 12/01/17 73.8 0.100 % by Weight 74.3 0.7 20 Source: 7110418-05 Prepared & Analyzed: 12/01/17

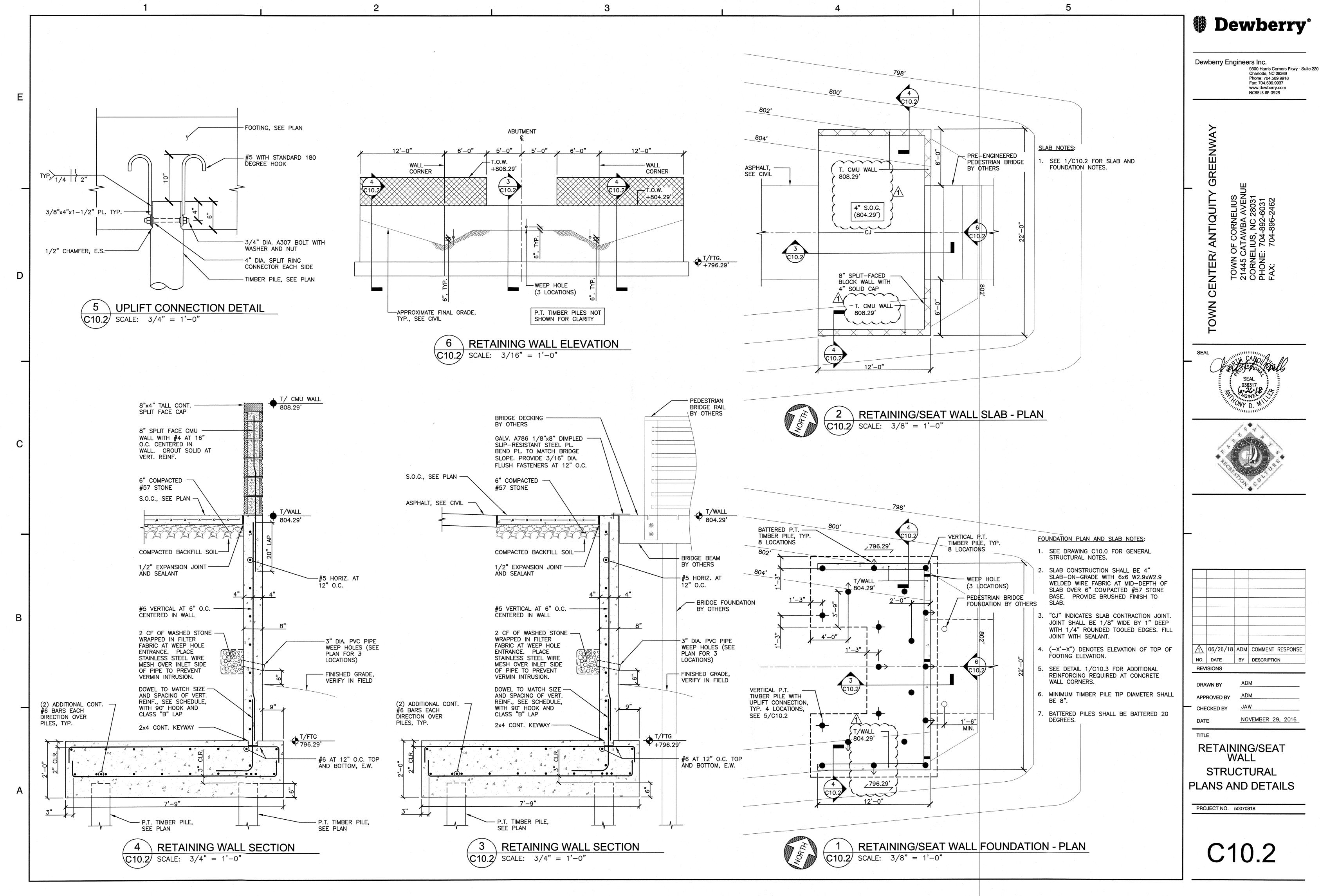
Sample Extraction Data

Prep Method: Solids, Dry Weight

7110418-09

Lab Number	Batch	Initial	Final	Date/Time	
7110418-01	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-02	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-03	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-04	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-05	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-06	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-07	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-08	P7L0038	30 g	30 g	12/01/17 16:00	
7110418-09	P7L0038	30 g	30 g	12/01/17 16:00	
Prep Method: 1311					
Lab Number	Batch	Initial	Final	Date/Time	
7110418-05	P7L0034	12.5 g	250 mL	12/04/17 15:00	·····
Prep Method: 5030B					
Lab Number	Batch	Initial	Final	Date/Time	
7110418-05	P7L0102	1 ml.	10 mL	12/06/17 8:42	
Prep Method: 5035					
Lab Number	Betch	initial	Final	Date/Time	
110418-01	P7K0551	5.97 g	5 mL	11/30/17 10:36	
/110418-02	P7K0551	11.13 g	5 mL	11/30/17 10:38	
110418-03	P7L0031	10.34 g	5 mL	12/01/17 8:08	
110418-04	P7K0551	7.15 g	5 mL	11/30/17 10:36	
110418-05	P7K0551	7.65 g	5 mL	11/30/17 10:36	
110418-06	P7K0551	6.86 g	5 mL	11/30/17 10:36	
110418-07	P7K0551	5.19 g	5 mL	11/30/17 10:36	
110418-08	P7K0551	5.81 g	5 mL	11/30/17 10:36	
440440.00					

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.


5.87 g

P7K0551

5 mL

11/30/17 10:36

								2.5				
SHA NA		Full-Service Analytical & Environmental Solutions		CHAI	2		OF CUSTODY R auote # to ensure profer BILING	RECORD		LAB USE ONLY settiones IN CALT utions emoral?	Q <mark>NLY</mark> YES NO	ot 35
449 Springbrook Road Phone 704/529-6364 Client Company Name: <u>2(0)</u> Report To/Contact Name: Reporting Address:	1000 Road - Chr 1923-6364 - Far 1920 - V 0 5 Cl	The NT Constraints	the second	Project Name: しょしい Short Hold Analysis: (Yes) (No) "Please ATTACH any project specific provisions and/or QC Requirements Involce To: どくさじしてへん	nalysis: CH any pr nd/or QC R	(Ves) (No) (Ves) (No) project specifi Requirement S.L. (C.N. (V	Re reporting (QC LEV	INT Project: (Yes) (NO) UST Project: (Yes) (NO) reporting (QC LEVEL I II III IV) (PROPER PROPER	Maximad CN WE FICES PRUPER PRESERVETIVES indesaurio Incorrect WITHIN HOLLITING TIME SO CUSTODY SEALS INTACTE VOLATILES not WIOUT HEADSPACES PROPER CONTIGURATES used?		
	4-1-1-1-C/1-C								TEMP Tr	TEMP TONTIN 121-1 OU	Quserved: 4 5 40 / 1. on.	n. 4. 0. °C
Fmail Address	<u> </u>	() (No):	1 1000	Purchase Ord	ler No./Bill	ler No./Billing Reference	1Ce		TO BE FILLE	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	AMPLING PERS	ONNEL
\mathbb{N}				Requested Due Date 🛛 1 Day 🖸 2 Days "Working Days" 🔤 6-9 Days 🖬 Stand	Date 0 1 0 	ay Li 2 Days Days La Stan	<pre>dard 10 days □ 4 Days dard 10 days □ Pre-Act</pre>	□ 1 Day □ 2 Days □ 3 Days □ 4 Days □ 5 Days □ 6-9 Days 12 Standard 10 days □ Rush Work Must Be	Certification:	SC OTHER	FL N/A	NC
Site Location Physical Address:	8 "	22	40	Samples receive Turnaround time (SEE REVEI RENDEREI	ad atter 14:00 ⊧is based on RSE FOR TER BY PRISM L) will be proce business day MS & CONDITT ABORATORIE(Samples received after 14:00 will be processed next business day Turnaround time is based on business days, excluding weekends (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVIC RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	Disc received after 14:00 will be processed next business day. tround time is based on business days, excluding weekends and holidays. (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRUSM LABORATORIES, INC. TO CLIENT)	Water Chior Sample Iced	Colle		
	DATE	<u>}</u>	MATRUX	SAMPL	E CONTAINER	IER	DECEMAN	ANAL	ANALYSIS REQUESTED	9		PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY HOURS	(SUIL, KATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	PRESERVA- TIVES	X.		REI	REMARKS	D NO.
B -	02.11	11:25	195	Viv	37	1.51	Vir					10
R. 7	67-11	13: 26	in a	* and		4.						10
B - 3		14:10						7				03
8 4		14:54			and America			>				50
10		1520						~ ~				30
8.6		1543				-						20
1		100	_					>		-		57
30		1622					چىيەت م	7	-			ۍ کړ
Vah-a		1634			1			7				50
			_				_					
Sampler's Signature			Sampled By	Sampled By (Print Name)				Affiliation		FRESS DO	PRESS DOWN FIRMLY 3 COPIES	နိုင်ငန်း နိုင်ငန်း
Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. A submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Chain of Custo he Prism Proje	ody is your auth ct Manager. The	orization for F re will be cha	rism to proce	ed with the hanges aft	a analyses a er analyses a	s requested ab have been inkl	ve. Any changes must be alized.	st be		PRISM USE ONLY	E ONLY
Relinquisted By: (Signatúra)		,	Receiv	Received By: (Signature				Date	Military/Hours	Additional Comments:		
Reilnquished By: (Signature)			Receiv	Received By: (Signature)		-		Date			Site Departure Time.	īme.
Relinquished By: (Signature)			Raceiv	Received For Prismit aboratories By	inatodas By:				Ĩ		Field Tr. th Fee	
Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNFIL RECEIVED AT THE LABORATORY.	LL SAMPLE COOL	ERS SHOULD BE TA PTED AND VERIFIEI	PED SHUT WITH AGAINST COC	CUSTODY SEAL	S FOR TRANS	Z SPORTATION 7 ORATORY.	O THE LABORATO		CrO		Milerage	
D Fed Ex D UPS D Hand-delivered	delivered	Prism Field Service	C) Other					7 (10	218			
		NDWATTER: DR	DRINKING WATER: D NC D SC	ER: SOLID	D WASTE: D SC		 	SC DINC DISC	OTHER: D NC D SC		SEE REVERSE FOR TERMS & CONDITIONS	RSE FOR MDITIONS
CONTAINER TYPE CODES:		A = Amber C = Clear G = Glass P = Plastic; TL	G= Glass P	= Plastic; TL		ined Cap	OA = Volatile C	= Teffon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)	D Head Space)		132	

